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Chapter 10
Head-AR: Human Activity Recognition
with Head-Mounted IMU Using
Weighted Ensemble Learning

Hristijan Gjoreski, Ivana Kiprijanovska, Simon Stankoski, Stefan Kalabakov,
John Broulidakis, Charles Nduka, and Martin Gjoreski

Abstract This paper describes the machine learning (ML) method Head-AR, which1

achieved the highest performance in a competition with 11 other algorithms and2

won the Emteq Activity Recognition challenge. The goal of the challenge was to3

recognize eight activities of daily life from a device mounted on the head, which4

provided data from a 3-axis IMU: accelerometer, gyroscope, and magnetometer.5

The challenge dataset was collected by four subjects, of which one subject was used6

as a test for the challenge evaluation. The method processes the stream of sensors7

data and recognizes one of the eight activities every two seconds. The method is8

based on weighted ensemble learning, which combines three models: (i) a dynamic9

time warping classification model, which analyzes raw accelerometer data; (ii) a10

classification model that uses expert features; (iii) and a classification model that
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2 H. Gjoreski et al.

uses features selected by a feature selection algorithm. To compute the final output,11

the predictions of the three models are combined using a novel weighing scheme.12

The method achieved an F1-score of 61.25% on the competition’s evaluation.AQ1 13

10.1 Introduction14

Human activity recognition (HAR) is an integral part of many wearable devices15

such as smartphones, smartwatches, and fitness trackers. It provides valuable context16

information that can be utilized in many ways, including tracking physical activities17

[1], tracking transportation modes [2], and tracking stress levels [3], among others.18

HAR can also be used as part of disease severity detection methods for Parkinson’s19

disease and depression monitoring.120

To advance the field of HAR and to provide a common benchmark for HAR21

algorithms, several machine learning (ML) challenges have been organized in the22

HAR community including Challenge-UP 2019,2 SHL-2018 [4], SHL-2019 [5],23

EvAAL-2013 [6–9], and Cooking AR Challenge.3 All of these ML challenges focus24

on the use of motion capture software and sensors worn below the head. For example,25

in SHL-2018, the participants developed ML pipelines to classify eight modes of26

transportation using data from eight smartphone sensors. SHL-2019 was similar27

to SHL-2018, with one additional complication, i.e., the competitors had to use28

cross-location transfer learning for their models. Challenge-UP was a HAR and fall-29

detection challenge in which the participants developed ML pipelines using data from30

wearable sensors, ambient sensors, and vision devices. The Cooking AR Challenge31

tasked the competitors with recognizing food preparation activities using motion32

capture and acceleration sensors.33

Differently to those ML challenges, the Emteq HAR challenge4 tasked the par-34

ticipants with recognizing eight daily life activities using data from inertial sensors35

(accelerometer, gyroscope, and magnetometer) provided by a head-mounted device,36

i.e., glasses. The activities of interest were: walking, walking using a smartphone,37

sitting on a sofa watching a movie, sitting on a sofa using a smartphone, sitting on38

a chair working on a laptop, sitting on a chair using a smartphone, standing station-39

ary, and standing using a smartphone. The dataset consisted of four subjects, one of40

whom was used as a test data for the final challenge evaluation.41

This paper describes the Head-AR method that was developed for the competition.42

Head-AR is an IMU ML method that processes streams of sensors data and recognizes43

one of eight activities every two seconds. Head-AR is an ensemble of three models: (i)44

a dynamic time warping classification model, which analyzes raw accelerometer data;

1Emteq Ltd: https://emteq.net.
2https://sites.google.com/up.edu.mx/challenge-up-2019.
3https://abc-research.github.oio/cook2020/.
4https://github.com/simon2706/Emteq-ARC2019.
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10 Head-AR: Human Activity Recognition with Head-Mounted … 3

(ii) a classification model that uses expert features; (iii) and a classification model45

that uses features selected from an extensive set of general time-series features, using46

a feature selection algorithm.47

10.2 Relation to Prior Work48

HAR using body-worn sensors is a mature field. ML algorithms such as Random49

Forest (RF), Support Vector Machines (SVM), and K-Nearest Neighbors (KNN) are50

widely used for building accurate HAR models [10]. For example, Arif et al. [11]51

constructed a pipeline in which time-domain features are extracted from accelerom-52

eter data and are then filtered using a Correlation-based Feature Selection (CFS)53

method. Before being fed into a KNN model, the data was further simplified by54

selecting only the most valuable instances. In this way, they were able to achieve an55

accuracy above 95% when classifying six ambulation activities. Weng et al. [12] used56

a hierarchical placement of three SVM classifiers to capture activity information in57

data from an accelerometer with a very low sampling frequency. The first SVM in58

their architecture is used to determine if the user is stationary or not. The other two59

are used to distinguish between stationary and dynamic activities, respectively. This60

architecture achieved an accuracy of above 96% while having a very low power con-61

sumption when classifying whether a user is sitting, standing, walking, or running.62

Zappi et al. [13] implemented a robust system that aimed to be independent of the63

number of accelerometers that were used or the quality of data. Their solution was64

based on the use of Hidden Markov Models as base learners for each sensor in the65

system, whose outputs were later combined using either majority voting or a discrete66

naive Bayes classifier. When all 57 sensors present in the Skoda Mini Checkpoint67

dataset are functional, their system achieved an accuracy of up to 96% on ten different68

activities.69

In recent years, deep learning (DL) has emerged as a novel approach in the field70

of HAR, with methods mainly focusing on the use of Convolutional Neural Net-71

works (CNNs) [14], Recurrent Neural Networks (RNNs) [15] or a combination of72

the two, with architectures such as the DeepConvLSTM [16]. Although DL has pro-73

duced some impressive results, in most cases the networks’ training has been done74

using large publicly available datasets such as OPPORTUNITY, PAMAP2, and UCI-75

Smartphone [17]. However, the Emteq HAR challenge provided a small dataset (only76

a few hours of data), making the training of end-to-end deep learning models not77

applicable in this situation. Furthermore, the results of several HAR competitions78

suggest that, in some situations, classic ML approaches might still be able to produce79

better results compared to DL [4, 5, 9].80

In the field of HAR, sensors are usually placed on the wrists [18–20], ankles [18,81

21], hips [2, 11, 12], waist [22] or the torso [23] of the user. Approaches using head-82

mounted devices are rather scarce. Loh et al. [24] used a head-worn accelerometer,83

barometer, and GPS sensors with an SVM for fitness activity classification. Ishimaru84

et al. [25] used head-worn electrooculography (EOG) and accelerometers data, which85
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4 H. Gjoreski et al.

was segmented and classified by a KNN algorithm. Additionally, Zhang et al. [26]86

and Farooq et al. [27] proposed the use of head-mounted sensors to detect eating and87

chewing events. More specifically, Zhang et al. [26] used eyeglasses equipped with88

electromyography (EMG) sensors in order to monitor muscles’ activity. In all of these89

contributions, the authors suggest using sensors that are either highly specialized to90

the classification task or are simply more expensive compared to the accelerometer,91

gyroscope, and magnetometer proposed in our method.92

Regarding the activities of interest in HAR, the most common ones for classi-93

fication are dynamic ones, e.g., walking, running, cycling, and doing housework.94

This is reflected in HAR datasets such as OPPORTUNITY [28] and PAMAP2 [29].95

Classifying activities which differ from each other by very subtle changes in posture96

or the existence of “micromovements” such as “sitting on a sofa watching a movie”97

versus “sitting on a sofa using a smartphone” is rarely addressed in related studies,98

even more so with a head-mounted device. This is of particular interest for Emteq,99

and therefore it is addressed by our method in this study.100

Finally, a state-of-the-art HAR method, which combines a feature-based model101

and a model based on raw data was recently presented by Gjoreski and Janko102

et al. [2, 30]. The raw data model was an end-to-end DL model. Compared to that103

approach, ours does not use an end-to-end DL, but a combination of Dynamic Time104

Warping (DTW) and KNN, it does not require large amounts of data for training and105

could be applied to smaller datasets.106

10.3 Data107

The competition dataset is recorded in a simulated home environment. It is comprised108

of approximately three hours of labeled data collected from three volunteers, released109

for training the models, and one hour of unlabeled data from a fourth volunteer used110

for the final evaluation of the competitors. The activities are performed when the111

user is either upright (standing stationary vs. walking) or sitting (sitting at a desk on112

a chair vs. sitting on a sofa). During the recording, the volunteers may or may not be113

using a smartphone, resulting in 8 subcategories of activities. The eight activities of114

interest and their distribution are shown in Fig. 10.1. The dataset size is quite limited,115

which makes the identification of all eight subcategories even more challenging.116

The data is collected with an IMU device worn on the head, providing: a 3-axis117

accelerometer, a 3-axis gyroscope, and a 3-axis magnetometer, sampled at 50 Hz.118

Also, we calculated the magnitude of each sensor, resulting in 12 sensor streams,119

overall.120
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10 Head-AR: Human Activity Recognition with Head-Mounted … 5

Fig. 10.1 Distribution of the activity data

Fig. 10.2 The Head-AR ensemble method

10.4 Method121

The proposed Head-AR method (shown in Fig. 10.2) is an ML ensemble of three122

models: two models are feature-based ML models working with different subsets of123

features, and one model is a DTW-based model that works with raw sensors’ data.124

In the first step, the raw data is filtered with a low-pass filter, which acts as a125

smoothing function in the time domain. This step reduces the influence of high-126

frequency artifacts, which in this dataset do not carry valuable information since the127

activities are less dynamic. After the filtering step, the data is segmented using a128

sliding window of 4 s and a 50% overlap. This way, the model recognizes an activity129

every 2 s. The windowing parameters were determined empirically. Next, the pipeline130

separates into three different branches.131

In the first branch (left and red in Fig. 10.2), the filtered sensor data is normalized,132

and a large number of features (12,000 overall) are extracted (see Sect. 10.4.1.). To133
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6 H. Gjoreski et al.

reduce the number of features, we used a combination of ranking and wrapper feature134

selection approaches (see Sect. 10.4.2.). Lastly, an RF model for HAR is trained using135

the selected features.136

The second branch (middle and green in Fig. 10.2) is similar to the first one, except137

that the order of the data normalization and feature extraction is reversed, i.e., we138

first extract the features, and then we perform normalization. Additionally, in this139

branch we use expert features which are based on previous HAR work [2, 31] (see140

Sect. 10.4.1.). The normalized features are then used to train another RF model.141

The third branch (right and blue in Fig. 10.2) uses a KNN classification model142

based on DTW distance rather than the standard Euclidean distance [32]. The dataset143

contains a transition label that splits the data into trials that consist of data from the144

same activity (class). Each trial is further segmented using a sliding window. To145

improve the computational feasibility of determining the DTW distance between the146

segments, the model considers only the middle segments from each trial. The final147

predictions are made by taking the majority class of the segments in one trial.148

Each model (branch) produces a prediction for each segment. The final prediction149

for each segment is calculated using weighted voting. For example, the final output150

O for the i th segment (instance) −→xi is determined as follows:151

O(
−→xi |k, m, n) =

⎧
⎨

⎩

k, PF Sk > PEm ∧ PF Sk > PDn

m, PEm > PF Sk ∧ PEm > PDn

n, PDn > PF Sk ∧ PDn > PEm

(10.1)152

where153

k = OF S(
−→xl ), k = 1, 2, . . . , 8

m = OE (
−→xl ), m = 1, 2, . . . , 8

n = OD(
−→xl ), n = 1, 2, . . . , 8

(10.2)154

and, PF Sk is the precision of the model in the first branch for the class label k;155

PEm is the precision of the model in the second branch for the class label m; and,156

PDn is the precision of the model in the third branch for the class label n. In other157

words, the weighing scheme outputs the prediction of the model that has the highest158

precision score for its predicted class. The precision for each class is calculated using159

cross-validation on the model’s training data. After having the precision for each160

class from each model, we can obtain the final weighing scheme as described with161

Eqs. 10.1, 10.2.162

Our weighing scheme is general and can be applied for two or more models. The163

main idea of the proposed scheme is to utilize multiple classifiers that are able to learn164

the characteristics of different classes in such a way that we maintain the individual165

accuracy for those classes when merging the predictions from multiple classifiers.166

496650_1_En_10_Chapter � TYPESET DISK LE � CP Disp.:29/9/2020 Pages: xxx Layout: T1-Standard

A
ut

ho
r 

Pr
oo

f



U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

10 Head-AR: Human Activity Recognition with Head-Mounted … 7

10.4.1 Feature Extraction167

The Python package tsfresh5 allows general-purpose time-series feature extraction,168

which we exploited in generating approximately 1000 features per sensor stream.169

These features include the minimum, maximum, mean, variance, the correlation170

between axes, their covariance, skewness, kurtosis, quartile values and range between171

the number of times the signal is above/below its mean, the signal’s mean change,172

and its different autocorrelations (correlations for different delays), among others.173

Since they are general features, we applied a feature selection algorithm to select the174

features that are useful for HAR. These features are used for one of the ML models.175

The second feature-based model uses expert features, i.e., features based on previ-176

ous HAR work [2, 31]. These features were calculated using the signal’s Power Spec-177

tral Density (PSD), which is based on the fast Fourier transform. The features were178

calculated for each sensor stream. They include PSD magnitude, energy, entropy,179

binned distribution using ten bins up to 25 Hz, and first four statistical moments of180

the PSD (mean value, standard deviation, skewness, and kurtosis). The overall num-181

ber of expert features is 264, which is low enough to be used with most of the ML182

algorithms without a feature selection.183

10.4.2 Feature Selection184

We built a feature selection algorithm to select the features that are useful for the185

specific task. We focused on removing correlated features and features which did186

not contribute to the model’s performance. First, we estimated the mutual informa-187

tion (MI) between each feature and the class. The higher the MI, the stronger the188

relationship between the class and the corresponding feature. Next, we divided the189

features into a 100 nonoverlapping subgroups. To begin the feature selection process,190

we calculated the Pearson correlation between the features in the first subgroup. If191

the correlation between a pair exceeded a threshold of 0.8 (strong correlation), we192

removed the feature with the lower MI. Using the remaining features from this193

subgroup and the features of the next subgroup, we created a new set of features194

on which the previously described procedure was applied again. This process was195

repeated until there were no more subgroups to add to the current set.196

In the last phase, we used a wrapper algorithm to further reduce the subset of197

features: (i) we selected the highest ranked feature (by mutual information), we198

trained an ML model, and we calculated its F1-score; (ii) the next best-ranked feature199

was added to the subset and the model was re-trained and re-evaluated. If the F1-score200

increased for more than 1%, the newly added feature was kept in the final feature201

subset, otherwise, it was rejected. The second step was repeated iteratively for each202

feature.203

5https://tsfresh.readthedocs.io/en/latest/text/list_of_features.html.
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8 H. Gjoreski et al.

To avoid overfitting, the feature selection was performed using LOSO evaluation,204

which resulted in three feature-selection iterations. In each iteration, the data of two205

subjects was used as a training subset (i.e., to calculate MI, correlation, and to train206

the ML model). The data of the third subject was used as a test (i.e., to evaluate the207

ML model during the “wrapper” phase). The final subset of features was calculated208

as the intersection of the features selected in each LOSO iteration. It contained 226209

features.210

10.4.3 Feature-Based ML Algorithms211

We experimented with a variety of ML algorithms including: Decision Tree [33], RF212

[34], Naive Bayes [35], KNN [36], SVM [37], Bagging [38], Adaptive Boosting [39],213

and Extreme Gradient Boosting (XGB) [40]. The models’ hyperparameters were214

tuned using the following procedure: parameter settings were randomly sampled from215

distributions predefined by an expert. Next, models were trained with the specific216

parameters and then evaluated using internal k-fold cross-validation on the training217

data. The best-performing model from the internal k-fold cross-validation was used218

to classify the test data.219

In general, the ensemble models performed better than the single-model algo-220

rithms. Additionally, the feature selection was ran both with the RF and the XGB221

and achieved similar results. We decided to continue with RF because it has fewer222

hyperparameters and it is faster to train.223

10.5 Evaluation Results224

We evaluated the performance of the models using LOSO evaluation. All results225

presented in this section refer to the internal evaluation of the methods.226

In Table 10.1, we present the macro F1-score [41], an evaluation metric predefined227

by the challenge organizers. The first four columns present the results achieved by228

the DTW model, the RF trained with expert features (RF-E), the RF trained with229

all general features (RF-A), and the RF trained with features selected by the feature230

selection algorithm (RF-FS). The next three columns present the results achieved by231

voting ensembles of two models (single models combined using weighted voting).232

We disregarded the RF-A model from further experiments, as it showed the lowest233

results in terms of macro F1-score and its training is time-consuming. The column234

before the last one presents the results achieved by our method (Head-AR), which235

is a weighted voting ensemble of the three models: DTW, RF-E, and RF-FS. The236

last column presents the results achieved by a majority voting ensemble of the same237

three models.238

The internal testing results show that each of the single models is specialized for a239

subset of classes. For example, the DTW outperformed the other single models for the240
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10 Head-AR: Human Activity Recognition with Head-Mounted … 9

Table 10.1 F1-score for: single models (DTW, RF-E, RF-A, RF-FS); two-model-weighted voting
ensembles; Head-AR—three-model-weighted voting ensemble; and three-model majority voting
ensemble. LOSO evaluation. w-walking, ws-walking using a smartphone, ssm-sitting on a sofa
watching a movie, sss-sitting on a sofa using a smartphone, scl-sitting on a chair working on
a laptop, scm-sitting on a chair using a smartphone, ss-standing stationary, sm-standing using a
smartphone

DTW RF-E RF-A RF-FS DTW
RF-E

DTW
RF-FS

RF-E
RF-FS

Head
AR

DTW
RF-E
RF-FS
majority

w 0.94 0.88 0.99 0.99 0.94 0.93 0.93 0.99 0.96

ws 0.39 0.83 0.99 0.99 0.76 0.99 0.99 0.99 0.95

ssm 0.74 0.92 0.46 0.52 0.92 0.74 0.67 0.92 0.90

sss 0.21 0.11 0.01 0.07 0.27 0.19 0.31 0.22 0.01

scl 0.51 0.66 0.30 0.62 0.66 0.57 0.36 0.66 0.62

scm 0.21 0.14 0.08 0.17 0.00 0.00 0.08 0.06 0.15

ss 0.75 0.83 0.53 0.78 0.83 0.78 0.81 0.83 0.90

sm 0.23 0.67 0.18 0.29 0.67 0.29 0.54 0.67 0.51

F1 0.50 0.63 0.44 0.56 0.63 0.56 0.59 0.67 0.63

classes “sitting-sofa-smartphone” and “sitting-chair-smartphone”. Also, the model241

trained with features selected by the feature selection algorithm (RF-FS) signifi-242

cantly outperformed the model trained with all extracted features (RF-A). The model243

trained with expert features (RF-E) was the best-performing single model. From the244

two-model combinations, the combination of DTW and RF-E achieved the highest245

performance. From the three-model combinations, the Head-AR (weighted ensem-246

ble) outperformed the voting ensemble. Most significantly, the Head-AR achieved247

the highest F1-score for five out of eight classes, and it is second best for two classes,248

which makes it the best-performing method, overall.249

Furthermore, Fig. 10.3 compares the methods by showing the F1-score achieved250

for each activity and each user, separately. The results of one method on a certain251

activity are shown as three same-colored dots, each representing one test user in the252

LOSO evaluation. For example, the three pink dots in each of the columns represent253

the three F1-scores obtained by the Head-AR method for each activity, when testing254

on three different users in LOSO evaluation. If we analyze the results of the four255

best- performing models, the Head-AR, the RF-E model, the DTW + RF-E model256

and the majority voting ensemble (represented with the colors, pink, orange, red,257

and gray, respectively) we can see that for the first two activities, the Head-AR258

model has the most consistent high results across all users. This is not the case for259

the other three models, whose results are in the range of 0.8–1.0. The Head-AR,260

RF-E, and DTW + RF-E models show similar results when being compared on the261

third, fifth, seventh, and eighth activity, with the majority voting ensemble showing262

larger variance between the results of different users and lower minimum scores263
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10 H. Gjoreski et al.

Fig. 10.3 A comparison of the results produced by each of the methods for all activity labels and
for every user. w-walking, ws-walking using a smartphone, ssm-sitting on a sofa watching a movie,
sss-sitting on a sofa using a smartphone, scl-sitting on a chair working on a laptop, scm-sitting on
a chair working on a smartphone, ss-standing stationary, sm-standing using a smartphone

when comparing the “sitting-sofa-movie” and “standing-smartphone” activities. The264

majority voting model shows higher results compared to the other three models only265

when looking at the “standing stationary” activity. Finally, when comparing the266

results on the “sitting-sofa-smartphone” and “sitting-chair-smartphone” activities,267

the DTW + RF-E model and the majority voting ensemble are the best out of those268

four, by achieving more consistent results for 2 out of the 3 test users.269

Table 10.2 shows the confusion matrix for the Head-AR method. The four classes270

that involve sitting on sofa or chair, with or without smartphone (ssm, sss, scl, and271

scm) are often confused. The most problematic classes are “sitting-sofa-smartphone”272

and “sitting-chair-smartphone”.273
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10 Head-AR: Human Activity Recognition with Head-Mounted … 11

Table 10.2 Summed and normalized (per row) confusion matrix from the LOSO evaluation for
Head-AR. w-walking, ws-walking using a smartphone, ssm-sitting on a sofa watching a movie,
sss-sitting on a sofa using a smartphone, scl-sitting on a chair working on a laptop, scm-sitting on
a chair working on a smartphone, ss-standing stationary, sm-standing using a smartphone

10.6 Discussion274

The weighted ensemble learning method, Head-AR, was compared with single-275

algorithm ensemble methods (e.g., RF) and voting ensemble method, i.e., a method276

that uses the same models as Head-AR, but computes the final output using majority277

voting. The results presented in Table 10.1 showed that Head-AR combines multiple278

models more effectively compared to the other methods and achieves the highest279

evaluation scores.280

Regarding the used algorithms in the weighting scheme, it should be noted that281

they were chosen based on experimental analysis. Experiments were performed with282

a variety of algorithms (see Sect. 10.4.3), and this particular combination achieved283

the highest score. However, Head-AR is algorithm independent, and depending on284

the domain, different algorithms can be used. Compared to other voting schemes,285

Head-AR’s main advantage is that it can combine models specialized for different286

classes. By using a specialized weighting scheme, Head-AR decides which model’s287

prediction to output as a final prediction.288

Moreover, the obtained results showed that Head-AR could distinguish well the289

activities when the person is in a standing position (e.g., “standing-stationary” and290

“standing-smartphone”) or when he/she is walking (e.g., “walking” or “walking-291

smartphone”). However, this was not the case with the sitting-related activities,292

especially “sitting-sofa-smartphone”, “sitting-chair-laptop” and “sitting-chair-293

smartphone”. In particular, “sitting-sofa-smartphone” is confused with the chair-294

related activities rather than “sitting-sofa-movie”, which at first seems like a more295

similar activity. Nevertheless, this can be explained if the posture of the head during296

these activities is observed in more detail. When a person uses a smartphone, it is usu-297
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12 H. Gjoreski et al.

ally held at chest or abdomen height. This results in a slight tilt of the head forward,298

which does not depend on whether the person is sitting on a chair or sofa. A tilt of299

the head can also be observed when a person is performing the “sitting-chair-laptop”300

activity, since the laptop is also at a person’s chest height when placed on a table301

or desk. On the other hand, while a person is performing the “sitting-sofa-movie”302

activity, no head tilt can be observed—the TV is usually at eye level. This is the303

only activity where a person is in a sitting position and does not use any device (that304

would result in a head tilt), so the Head-AR method can distinguish it from the other305

sitting-related activities. However, it remains a challenge for the model to be able to306

distinguish the other sitting-related activities when a person is using a device (e.g.,307

smartphone, laptop etc.).308

One possible solution for this problem would be to introduce temporal informa-309

tion of the instances. In the experiments presented in the paper, all windows were310

classified independently from one another. This approach discards all the informa-311

tion on temporal dependencies between them. Nevertheless, if a user, for example,312

is currently performing “sitting-chair-laptop”, but the next window is classified as313

“sitting-sofa-smartphone”, followed by another “sitting-chair-laptop” classification,314

it is likely for “sitting-sofa-smartphone” to be a misclassification. Such relations315

can be captured using an additional model after the classification. Example models316

are Hidden Markov models (HMMs), RNNs, Long Short-Term Memory (LSTM)317

networks [42], bidirectional LSTMs [43], Gated Recurrent Unit (GRU) networks318

[44], among others. These models can use past and current predictions as input and319

output the “corrected” current prediction. However, the temporal information about320

the instances in the dataset was not available, so this approach was not applicable for321

this challenge.322

10.7 Conclusion and Future Work323

We presented the Head-AR method for HAR based on weighted ensemble learning324

that combines three ML models, each of them specialized for a subset of classes. Two325

of the models are feature-based, and one works with the raw sensors’ data streams.326

Head-AR processes the sensors’ data and recognizes one of the eight activities every327

two seconds. It was tuned for robustness and real-time performance by combining328

head-mounted IMU sensors.329

The internal evaluation showed that this optimal pipeline configuration achieved330

an F1-macro score of 60–70% (average 67%) on the three training subjects using331

LOSO evaluation. In general, Head-AR shows higher minimum scores and lower332

variance between the results for almost every activity of the three subjects, when333

compared with the other four best-performing methods.334

On the competition’s evaluation, Head-AR achieved 61.5% F1-macro score on335

one unseen test subject. However, the results show that there is still room for improve-336

ment, especially for sitting-like activities. The problem with these activities is that337

they are too similar to each other when looking through the prism of a head-mounted338
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device. Even more, the dataset is too small, thus learning accurate models that will339

work for unseen users is challenging. One possibility to tackle this problem is to340

incorporate temporal information of the instances into the HAR method, i.e., to341

use an additional model after the classification that can capture temporal relations342

between the classes. Another idea is to train personalized models. They are more343

likely to effectively learn the user-specific differences that confound general models344

and significantly improve the results [2]. Another possibility to tackle this problem is345

to include more data from a variety of subjects. Additionally, one can focus on micro-346

movements and analyze the accelerometer data using template-matching techniques347

[45]. The idea is that when analyzing the whole sitting segment, one might find some348

templates/patterns that are characteristic for each of the activities. Finally, we plan349

to further analyze the magnetometer data to detect the room’s specificities, such as350

locations of the sofa and chairs, to name a few. Even though this might improve the351

results for this particular dataset, it has disadvantages because the models may learn352

a room-specific model and not a general one that will work in any environment.353
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