
Abstract 

Motivated by the recent trends of the wristband de-
vices and smartwatches accompanied by recent 
trends in deep learning, we analyzed deep learning 
and classical machine learning methods on human 
activity recognition using wrist accelerometer. In 
particular, we compared the recognition perfor-
mance of deep learning convolutional neural net-
works (DL-CNN) and Random Forest with hand-
crafted features (ML-RF) on two activity recogni-
tion datasets, AmI and Opportunity. The results on 
the first (larger) dataset showed that both methods 
perform similarly, achieving 74.6% (ML-RF) and 
75.5% (DL-CNN) accuracy. On the second dataset 
we compared the results for both wrists. The results 
showed that the left wrist achieves higher accuracy 
for both methods. Additionally, the DL-CNN 
achieves higher accuracy for the left and lower ac-
curacy for the right. The comparison showed that 
ML-RF is in general more robust and better recog-
nizes the activities which are represented with small 
number of examples, e.g., transition and kneeling. 
However, with sufficient data (i.e., on the first da-
taset), DL-CNN slightly outperformed ML-RF and 
achieved significantly better accuracy than other 
ML methods: Naïve Bayes, K-Nearest Neighbors, 
Decision tree, and Support Vector Machines.  
  

1 Introduction 

Automatic recognition of daily activities could potentially 
contribute to proper management of pathologies such as obe-
sity, diabetes and cardiovascular diseases [1]. For example, 
moderate to vigorous physical activity is associated with de-
creased risk factors for obesity, cardiovascular and pulmo-
nary diseases, cancer, depression, and increased bone health 
[2]. Accurate measurement of physical activity is therefore 
essential in developing intervention strategies and provides 
rich contextual information which can be used to infer addi-
tional useful information [3, 4, 5].   

The recent literature on activity recognition (AR) shows 
that by applying artificial intelligence (AI) methods, in par-
ticular machine learning (ML) methods, to sensors data it is 

possible to recognize human activities. Namely, applying ML 
methods on wearable accelerometers has proven to be most 
successful and these devices are probably the most mature 
sensors for recognizing single-user basic activities such as: 
running walking, standing, sitting, lying and similar [6,7,8]. 
The reason for this is that accelerometers are capable of 
measuring human motion (mainly by measuring the linear 3D 
accelerations) and estimating body postures (mainly by 
measuring the orientation with respect to the Earth’s gravity). 
Multi-accelerometer systems have already shown the ability 
to recognize activities with high accuracies [8]. However, 
having multiple sensors attached is a burden to the user, 
which is probably the biggest reason why most such multi-
sensor systems are not well-accepted and are not commer-
cially successful regardless of the technical improvements, 
i.e., battery life, size and weight.  

On the other hand, wristband devices (FitBit, Empaica, 
Microsoft band) and smartwatches (Apple watch, Android 
wear wristwatches) are becoming popular mainly because 
people are accustomed to wearing watches, which makes the 
wrist placement one of the least intrusive placements for 
wearing a device. However, developing an algorithm for a 
wrist device that will successfully recognize most of our daily 
activities is quite a challenge. The reason for this is that hand 
is usually the most active body part and produces more irreg-
ular movements compared to the other parts of the body (e.g. 
the torso). While there are some recent studies on this topic, 
researchers usually find this placement less informative 
achieving poor AR performance [7].  

In recent years deep learning (DL) has emerged as a novel 
approach to classical machine learning. DL is capable of 
high-level abstraction of data, which allows for robust mod-
els capable of contending with high noise accompanying AR 
problems. In a typical DL architecture, each layer combines 
features (output) from previous layer and transforms them via 
non-linearity function to form new feature set. This gives the 
network an ability to automatically learn best features for spe-
cific problem domain, forming hierarchy where basic fea-
tures are detected in first layers of the network, and in the 
deeper layers the abstract features from previous layers are 
combined to form complex feature maps. 

DL is already state of the art in computer vision, voice 
recognition and natural language processing where it per-
forms better than all standard methods of ML and on pair with 
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human ability [9]. While some attempts at detecting AR prob-
lems were made with use of DL [10], this area still lacks some 
proof whether DL is better at solving AR problems than reg-
ular ML.  

In this paper we compare DL, convolutional neural net-
works (DL-CNN) to standard ML methods (J48, RF, SVM, 
KNN, and Naïve Bayes), in the task of human AR using wrist 
accelerometer. The comparison was performed on two da-
tasets: dataset recorded at our laboratory by 10 subjects, and 
the Opportunity dataset recorded by 4 subjects [27,28].  

2 Related work 

The related literature in AR field shows that wearable accel-
erometers are among the most suitable sensors for unobtru-
sive AR [12]. Accelerometers are becoming increasingly 
common because of their lowering cost, weight and power 
consumption. Currently the most exploited and probably the 
most mature approach to AR are wearable accelerometer ML 
methods [7,13,14]. This approach usually implements widely 
used classification methods, such as decision tree, Random 
Forest, SVM, KNN, Naive Bayes, and recently DL [15,16].  

For the sake of the user’s convenience, AR applications 
are often limited to a single accelerometer, even though 
nearly all reports find that better performance is obtained with 
more accelerometers. Numerous studies have shown that the 
performance of an AR system strongly depends on the accel-
erometer placement (e.g., chest, abdomen, waist, thigh, an-
kle) and that some placements are more suitable (in terms of 
AR performance) for particular activities [7,6,8]. On the other 
hand, the obtained accuracies strongly depend on the type of 
activities – micro activities demand wrist information while 
basic activities like standing, walking, lying, and sitting are 
recognized worse with wrist sensors.  

The wrist was the least exploited placement for AR in the 
past, mainly because of our inclination towards frequent hand 
movements which negatively influences the AR system. The 
researchers were usually testing chest, waist, thighs (left and 
right) [13,17], ankles (left and right) and neck. For example, 
a recent overview of AR systems showed that only 5 out of 
13 analyzed systems included wrist data in their systems [7]. 
The results vary a lot and cannot be compared through differ-
ent studies (different datasets, different algorithm parameters, 
different methods, etc.). In our previous work we also tested 
most of these locations on two datasets. On the first one, the 
results showed that all of the locations perform similarly 
achieving around 82% accuracy [18]. On the second dataset, 
where the experiments were more thorough (bigger dataset, 
improved algorithms) the results showed that thigh and ankle 
perform similarly (82% and 83% respectively) and achieve 
higher accuracy compared to the chest (67%) [19]. 

However, with the penetration of the wrist-worn fitness 
trackers and smartwatches, it is to be expected that wrist sen-
sor placement becomes a matter of research and application 
interest. Recently, Trust et al. [20] presented a study for hip 
versus wrist data for AR. The models using hip data slightly 
outperformed the wrist-data models. Similarly, in the study 
by Rosenberg et al. [21] for detecting a sedentary behavior, 
the models using hip data outperformed the wrist models. In 

the study by Manini et al. [11] ankle data models achieved 
high accuracy of 95.0% that decreased to 84.7% for wrist data 
models. Ellis et al. [22] presented an approach for the recog-
nition of locomotion and household activities in a lab setting. 
For one subset of activities the hip-data models outperformed 
the wrist data, but over all activities the wrist-data models 
produced better results. In our study we are confirming that 
ankle, knee and belt sensor placement can produce better re-
sults, but the wrist produces better results compared to elbow 
and chest. 

Garcia-Ceja et al. [23] presented person-specific wrist-
band AR for activities such as: shopping, showering, dinner, 
computer-work and exercise. Similarly, Attal et al. [25] used 
10-fold-cross validation to evaluate their models and addi-
tionally used 1 second window of data with 80% overlap, thus 
resulting in having similar instances in the training and eval-
uation dataset, which explains the high accuracy (99%). In 
our study, we are not just analyzing general models (using 
leave-one-subject-out evaluation technique). 

Various methods of DL are more and more present in all 
areas of artificial intelligence. Just recently computer was fi-
nally able to beat human opponent (world champion) in game 
of GO [26]. Last year computer was able to learn to play old 
arcade games, where it again achieved master level and was 
able to beat human players in most of the game variants [24]. 
While the mentioned events were the most talked about in 
recent time, DL has also made large strides in areas of natural 
language processing, speech recognition and computer vision 
where it achieves close to human level accuracy. 
 Other areas of signal processing like AR are still mostly 
unexplored. In [10] authors showed that in some cases AR is 
even better with usage of DL compared to standard ML. They 
showed that by using convolutional neural networks and ex-
tensive data preprocessing that reduces influence of null class 
and attributes it is possible to beat standard ML methods on 
Opportunity dataset [27,28], using 113 attributes from vari-
ous on and off body sensors. 

3 Datasets 

We performed our analysis on two datasets. The first dataset 
was recorded at our Ambient Intelligence (AmI) laboratory 
by ten participants. The second dataset is the Opportunity da-
taset, which is one of the most commonly used benchmark 
dataset for AR.  

3.1. AmI Dataset 

For the first dataset, a 120-minute scenario was designed 
which captures the real-life conditions of a person’s behavior. 
The scenario was performed by ten volunteers and included 
eight elementary activities (the percentage of instances per 
class): lying (23%), standing (17%), walking (14%), sitting 
(12%), cycling (10), on all fours (8%), kneeling (6%), run-
ning (5%), bending (2%), and transition (3%). In particular, 
the walking activity was performed on a treadmill with a one-
percent inclination at 4 km/h and 6 km/h, the running activity 
was also performed on a treadmill with a one-percent incli-
nation at 8 km/h, and the cycling activity was performed on 



a stationary bicycle with 65 RPM with the difficulty set to 80 
watts for the first six minutes and 160 watts for the other six 
minutes. 

The sensor equipment included Shimmer 3-axis accel-
erometer placed on a wrist with adjustable strap. The data was 
acquired on a laptop in real-time via Bluetooth using accel-
erometer sampling frequency of 50 Hz. The data was manu-
ally labeled with the appropriate activities.  

3.2. Opportunity Dataset 

The Opportunity AR dataset is a benchmark dataset, which is 
commonly used dataset for AR [27,28]. It contains human ac-
tivities related to the breakfast scenario, which are captured 
by sensors configured on three subjects who perform every-
day life activities. There are 4 classes in this AR task: stand-
ing (50%), walking (28%), sitting (19%) and lying (3%). The 
sensors include a wide variety of body-worn, object-based, 
and ambient sensors – 72 in total. However, for the need of 
our study we used only the acceleration data from the left and 
the right wrist. The sampling rate of the sensor signals is 30 
Hz. With these sensors, each subject performed one “drill” 
session, which has 20 repetitions of a pre-defined sequence 
of activities and 4 recordings of usual daily activity consist-
ing of 9 specific activities.  

One of the biggest issues concerning the Opportunity da-
taset is the missing data caused by recording data over Wi-Fi 
or Bluetooth. Also when the activity performed by the volun-
teer did not belong to a targeted class or was transitioning 
between two activities, the class for such event was marked 
as null. This way the null class represents roughly 80% of all 
samples. Because the subjects were wearing accelerometers 
on both wrists, we performed analysis on both locations for 
the Opportunity dataset. 

4 Methods 

4.1. Deep Learning 

Convolutional neural networks (DL-CNN) were chosen for 
this study. DL-CNN use multiple layers to combine features 
learned in previous layers into complex ones. Because the ac-
celerometer provides time-series acceleration data, we first 
transformed the continuous data into windows. We used 2 
and 4 s window with 1 and 2 s overlap as it is common in AR 
and also empirically confirmed in our previous work [29]. 
With the sensor sampling frequency of 50Hz this brings ex-
actly 100 samples for AmI dataset and 120 samples for Op-
portunity dataset, where sampling frequency is 30Hz. Multi-
plying this over n (50-100) feature maps in m (at least 5) fully 
connected layers it can be seen that the number of calcula-
tions required at each iteration is way beyond what current 
computers are capable of doing. That is why we use pooling 
method for down-sampling. The accelerometer provides 3 
data streams (x, y and z axis) which is why we use filter sizes 
that only pool over the window and not over the dimension 
(axis). The empirical analysis of the data showed that using 
max-pooling brings best results for this problem. 

Activation function 
After using convolution and max-pooling, the values need to 
go through activation function in order to break linearity. 
Rectifier Linear function (ReL) is used as activation function 
in each layer. Most current DL methods run on high perfor-
mance GPU which are good at doing simple math operations 
(addition, multiplication) but bad at division and approxima-
tion functions (e.g. tan, cos). Solving ReL equation (below) 
can be up to 10 times faster than solving approximation for 
tanh on the GPU: 

𝑓(𝑥) = 𝑀𝑎𝑥(0, 𝑥) 

Gradient descent Optimization 
The most time-expensive part of DL methods is the gradient 
descent, which is used to update values of weights in the net-
work. The most commonly used method for updating the 
weights is the Stochastic Gradient Descent (SGD). For each 
input – output pair an error is calculated and then used to up-
date values on weights in each layer according to the gradient.  

SGD is sensitive to data variance and cannot be parallel-
ized which makes it very slow on large amounts of data. To 
overcome this, batched gradient descent is usually used. In-
stead of calculating the gradient for each input-output pair, it 
is calculated for a batch of input-output pairs. Then, the result 
of each batch is averaged and applied. This method gives us 
less variance sensitivity while speeding up the learning pro-
cess by parallelization.  

For faster learning a process called annealing can be used. 
This means that learning rate (𝛼) is adjusted in real time de-
pending on learning state. In the beginning the 𝛼 is large to 
quickly converge toward the solution, later on 𝛼 is lowered 
to allow for precise adjustments to reach the optimum. 

Instead of adjusting 𝛼 depending on current iteration, it is 
better to adjust it based on the strength of the gradient. Usu-
ally the gradient is larger at the beginning of learning and 
converges toward 0 toward the end. ADAGrad and 
ADADelta normalize the gradient update based on the cumu-
lative gradients from previous iterations. This may cause the 
normalization parameter to become so big that it stops learn-
ing prematurely.    

In our experiments (see Figure 1) it proved best to intro-
duce decay parameter (𝛽) to the function. Beta parameter 
tells the ratio between current gradient (Δ𝑓) and accumulated 
past gradient (𝑣) to be used for updates. 

𝑣 =  𝛽𝑣 + (1 − 𝛽)(Δ𝑓)2 
In our tests (see Figure 1) it can be seen that RMSProp 

performs the best of the mentioned methods, improving con-
vergence speed by more than 5 times compared to SGD. 

Architecture  
Our DL-CNN is constructed out of 6 layers. The first three 
are convolution-pooling layers followed by two fully con-
nected hidden layers, the last layer consists of softmax regres-
sion. The output of softmax layer is the probability of the in-
put window belonging to each of the possible classes. The 
first three layers consist of 30 neurons (feature maps) each, 
the fourth layer has 40 and fifth has 50 neurons. We empiri-



cally chose this values as the best for our domain. Convolu-
tion filter sizes in convolution layers are (1, 15), (1, 10) and 
(1, 5), where first dimension represents accelerometer axis (x, 
y, z) and second represents samples in windows. Pooling fil-
ter sizes on first two layers are (1, 2). On third convolution 
layer a pooling over accelerometer axis is done in order to 
unify data stream (3, 1). Activation function used in each 
layer is rectifier function (ReL). Cross entropy is used as a 
cost function, updates in the backpropagation step are done 
with the RMSProp procedure. 

 

4.2. Classical Machine Learning 

For the classical ML approach, we used standard classifica-
tion pipeline. That is: data segmentation, data filtering, fea-
ture extraction, feature selection and building a classification 
model. This is a result of decades of experimenting in our la-
boratory, resulting among others in the first place at the 
EvAAL competition [12,30]. 

The data segmentation phase uses an overlapping sliding-
window technique, dividing the continuous sensor-stream 
data into data segments − windows. A window of a fixed size 
(width) is moved across the stream of data. We used 2 s win-
dows with 1 s overlap, which was defined empirically in our 
previous work [29]. Once the sensor measurements are seg-
mented, further pre-processing is performed using two simple 
filters: low-pass and band-pass. The feature extraction phase 
produces 52 features from the accelerations along the x, y and 
z axis. The first seven features (Mean X/Y/Z, Total mean and 
Area X/Y/Z) provide information about the body posture, and 
the rest features represent the motion shape, motion variation 
and motion similarity (correlation). More thorough analysis 
of the features can be found in Tapia’s PhD thesis [31]. 

Once the features are extracted, a feature vector is formed. 
During training, features vectors extracted from training data 
are used by a ML algorithm to build an AR model. During 
classification, feature vectors extracted from test data are fed 
into the model, which recognizes the activity of the user. We 

compared five ML algorithms: J48 decision tree [32], Ran-
dom Forest [33], Naive Bayes [34], SVM [35] and KNN [36]. 

5 Experimental Results 

For the evaluation of the methods, the leave-one-person-out 
cross-validation technique was used. This means the model 
was trained on the whole dataset except for one person, and 
tested on the remaining person. This procedure was repeated 
for each person.  

Four evaluation metrics, commonly used in AR, were an-
alyzed: the recall, precision, F-measure (F1-score), and accu-
racy. 

5.1. AmI Dataset Results 

First, we evaluated the 5 ML methods: NB, J48, KNN, SVM 
and RF. Figure 2 shows the accuracy achieved by each of the 
methods. RF achieved 74.6% accuracy, which was the best 
achieved accuracy overall (statistical tests confirmed this). 
Therefore we chose RF as the ML representative (ML-RF) 
for the other experiments. 

Figure 3 shows the comparison of the ML-RF method and 
the DL-CNN method for each of the subjects individually and 
the averaged accuracy. The results show that both methods 
perform similarly and that the averaged accuracy for the DL-
CNN is 2 percentage points (p.p.) better than the ML-RF. The 
biggest improvement of the DL-CNN compared to the ML-
RF is for subject 8 (for 21.5 p.p.).  
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These results show that the performance for ML and DL 
is similar, which on one hand confirms the years of experi-
ence and research performed in AR by standard ML (manual 
exhaustive feature extraction, feature selection and choosing 
the best ML algorithm) and on the other hand the power of 
the DL to automatically extract relevant features and to 
achieve slightly better performance. 

We additionally show more detailed results (Figure 4), 
i.e., the confusion matrix, the recall, the precision and the F1 
score for each of the activities. The results show that the best 
recognized activity is running with 97% F1 score. Other ac-
tivities that achieve relatively high F1 score (above 75%) are: 
walking, sitting, lying, and cycling.  Additionally, the matrix 
shows the mutual misclassification between sitting and lying, 
which is to some extent expected, since both are static activ-
ities (postures) and the orientation of the wrist is usually sim-
ilar, i.e., horizontal. Similarly, walking and standing are 
mixed, because the orientation of the wrist is vertical. As ex-
pected, uncommon activities (such as bending, transitions 
and kneeling) which are represented with a lower number of 
examples are poorly recognized. 

The confusion matrix for the DL-CNN (Figure 5) shows 
that the best recognized activity is running, which is the same 
as for the ML-RF method, but with 2 p.p. higher F1 score, 
i.e., 93%. Similarly to ML-RF, other activities that achieve 
relatively high F1 score (above 75%) are: walking, sitting, 

lying, and cycling. Similar misclassifications as for the ML-
RF, are noted also for the DL-CNN, i.e., between sitting and 
lying; and standing and walking. As expected, uncommon ac-
tivities such as transitions and kneeling which are represented 
with a lower number of examples are poorly recognized. 

Figure 6 shows the comparison of the F1 score for each 
of the activities for the DL-CNN and ML-RF method. The 
DL-CNN achieves higher F1 score for the following activi-
ties: walking, standing, bending, and all fours. The biggest 
improvement is for the bending activity, which is for 11 p.p. 
As expected, the DL-CNN achieves significantly worse per-
formance for the transition and the kneeling activities, which 
are activities that occur rarely and are not well expressed in 
the dataset. 

5.2. Opportunity 

For the Opportunity dataset we performed analysis for both 
wrists: left and right. Figure 7 shows the accuracies achieved 
by the ML-RF and DL-CNN methods for both sensor loca-
tions respectively.  

The results show that the left sensor placement achieves 
higher accuracy compared to the right-one for both methods. 
Additionally, the DL-CNN achieves higher accuracy (com-
pared to the ML-RF) for all of the subjects for the left wrist. 
However, the outcome is opposite when we analyze the re-
sults for the right wrist, i.e., the ML-RF achieves better accu-
racy for each of the subjects. Therefore, one can only con-
clude that the left sensor placement (non-dominant hand) is 
better for AR for the right-handed (all test subjects). 
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Figure 5. Confusion matrix for the DL-CNN method. 
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Similar as for the AmI dataset, we also analyze the confu-
sion matrices – Figure 8. Similar conclusions can be made for 
both wrists, i.e., standing and sitting are better recognized 
compared to the walking and lying. Moreover, lying is poorly 
recognized achieving F score of 19% and 13% for the left and 
the right wrist respectively. This is probably due to the small 
number of lying examples in the dataset (approximately 4%). 

Similar results are achieved by the ML-RF method (Figure 
9). That is, for both wrists standing and sitting are better rec-
ognized compared to walking and lying. Also, lying is poorly 
recognized achieving F score of 30% and 18% for the left and 
the right wrist, respectively. However, lying is in general bet-
ter recognized by the ML-RF compared to the DL-CNN for 
both wrists. 

6 Conclusion 

We compared the recognition performance of DL-CNNs and 
ML-RF method on two datasets, AmI and Opportunity, for 
determining basic activities such as standing or sitting. 

On the first dataset, AmI, the results showed that RF per-
forms best when compared to other ML methods: NB, J48, 
KNN, and SVM. When compared to the DL-CNN, it 
achieved for 2 p.p. worse accuracy. This performance simi-
larity confirms the years of research experience in AR per-
formed by standard ML procedure: manual exhaustive fea-
ture extraction, feature selection and choosing the best ML 
algorithm. The slightly better performance achieved by the 
DL-CNN shows the power of DL to automatically extract rel-
evant features and to learn a classification model. 

On the second dataset we compared both methods for the 
left and the right wrist. The results show that the left sensor 
placement achieves higher accuracy compared to the right-
one for both methods for the right-handed. Additionally, the 
DL-CNN achieves higher accuracy (compared to the ML-
RF) for all of the subjects for the left wrist. However the sit-
uation is opposite when we analyze the results for the right 
wrist, i.e., the ML-RF achieves better accuracy for each of the 
subjects. Therefore, one can only conclude that the left sensor 
placement (non-dominant hand) is better for AR.  

One of the main problems of using DL-CNN and DL in 
general is the large amount of data they require in order to 
learn. This was also shown empirically on both datasets. That 
is, transition and kneeling activities in the AmI dataset are 
poorly recognized mainly because of this reason, i.e., they are 
represented by 6% and 3% of the whole dataset. Similarly, 
lying is poorly recognized in the Opportunity dataset because 
it is only represented by 4% in the whole dataset. In these 
cases, it seems that ML-RF is more robust and achieves better 
results for these activities. 

For future work we plan to apply the RF algorithm on the 
features learned by the DL-CNN method. This way we would 
be able to directly compare the accuracy achieved by the au-
tomatically learned features and the hand-crafted ones. Com-
bining both methods is also considered for future work, e.g., 
combining the features, combining the outputs of the two 
methods using voting techniques, meta-learning (Stacking) 
and similar. 
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