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ABSTRACT
Different people experiencing the same stressor can have differ-

ent psycho-physiological reactions. Such differences happen even

while reporting the same affective states. This mismatch might

cause a drop in the performance of affect recognition models. On

the other hand, this same psycho-physiological uniqueness has

been successfully utilized to develop biometric recognition systems

based on wearable sensing data. All this raises the potential for

exploiting the benefits of the psycho-physiological uniqueness ob-

served in biometric recognition systems to improve stress affect

machine learning models. In this paper, we investigate the joint

learning of a model for stress recognition and user identification

to improve the performance of the first task. The joint model was

learned using Multi-task Learning (MTL) neural network. Using

Leave-One-Subject-Out evaluation procedure, we showed that MTL

brought an improvement of 6.5 percentage points in F1-score com-

pared to single-task models (from 86.1 to 92.6 F1-score). The MTL

approach did not bring increased complexity to the overall process-

ing pipeline. Instead, it showed how user identification – typically

disregarded in machine learning approaches for affect recognition –

could be utilized as an additional source of information to improve

the performance of ML models, even in scenarios where the models

are tested on newly presented users.
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1 INTRODUCTION
In the last few decades, technology has advanced significantly,

allowing machines to move well beyond the initial desktop revolu-

tion, gathering a special role in everyday life of humans. Initially,

many people shared a single machine. Subsequently, the concept

of a 1:1 relationship between machines and humans significantly

impacted the way people used computer systems. This kind of
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human-machine relationship changed in the last decade when a

1:M relationship was established, where each user had many com-

puters. From such a relationship, a new computing paradigm took

shape: the Ubiquitous Computing era [10]. Computing can be de-

fined as the interaction with artifacts and environments that inter-

twine with communication and processing capabilities [39, 40]. The

foundation of ubiquitous computing is to empower the human com-

ponent to act and interact in such a system and to further enhance

the human experience inside of it. For an effective human-machine

interaction, it is pivotal to put together machines able to recognize

human affect.

Human affect is part of natural everyday communication. Affect

can be expressed in various ways, for example, verbally or through

facial expressions and hand gestures. Research shows that affective

states can have a crucial role in the decision-making process [24],

being strongly related to tendencies to perform actions. These ca-

pabilities and the ability to understand or feel and react to affective

states of other human beings have been linked to the so-called "emo-
tional intelligence" [17]. Including affect in the human-machines

communication is defined as "affective computing" and affect recog-
nition is an important problem in affective computing. One of the

applications of affect recognition systems is to forge machines that

are capable of detecting humans under stress conditions, with the

goal of improving the interaction between humans and machines

[26], [25].

The affective states of human beings can be recognized using

sensing devices. For example, the polygraph, commonly referred to

as the lie detector, was the first tool with the capabilities of estimat-

ing the true internal state of a human being [37]. In the affective

computing field, various approaches have been established exploit-

ing audio-visual expressions or the analysis of physiological signals

and body movements [3]. Regarding sensor technologies, though,

the commonly utilized sensors, for example, the electromyography

(EMG) sensors, were lab-specialized devices that were bulky and ex-

pensive. These devices were especially intrusive with respect to the

end-users. This did not allow extensive usages of such instrumenta-

tion in everyday settings [1]. The situation completely changedwith

the breakthroughs in hardware and software engineering, which

led to the availability, first for professionals and academic purposes

and then for the public market adoption, of wearable devices. The

major contribution of wearable devices equipped with multiple

sensors is the capability of capturing behavioral and physiological

traits in a non-invasive manner.

In the research community, there are still open challenges that

need to be tackled in order to make stress recognition ready for

real-life deployment. A major issue is the uniqueness and thus the

interpersonal variability of the physiological responses of different

humans to stimuli [22]. Different people experiencing the same

stressor, or even reporting the same affective state, can have differ-

ent psycho-physiological reactions. This mismatch might cause a

drop in the performance of stress recognition models. On the other

hand, this psycho-physiological uniqueness can and has been used
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recently to develop wearable biometric recognition systems with

encouraging results [12, 28].

The main goal of this article is to investigate whether we can ex-

ploit the benefits of the psycho-physiological uniqueness observed

in biometric recognition systems to improve affect recognition ma-

chine learning models. To do so, we use Multi-task learning (MTL)

to jointly recognize users’ stress levels and identity. The MTL par-

adigm could allow exploiting the commonalities and differences

across these two tasks to improve the performance of the main

task. A model able to jointly recognize user identity and affective

state would enable the delivery of appropriate and personalized

intervention strategies. MTL for jointly recognizing users and per-

forming other classification tasks has been previously studied in

other domains, with activity recognition from wearable accelerom-

eters being the closes one to our work [31, 8]. To the best of our

knowledge, this is the first study exploring the conjunction of phys-

iological data from wearable sensors and user identification for

stress recognition via MTL.

2 BACKGROUND
2.1 Stress recognition
Stress is considered a process by which a stimulus elicits an emo-

tional, behavioral and/or physiological response, which is condi-

tioned by an individual’s personal, biological and cultural context

[19]. The system that generates a response to a stress process, is

called autonomic nervous system (ANS). This system is the primary

mechanism in control of the fight-or-flight response, during which

a mixture of hormones (like adrenaline) are released, leading, for

example, to increased heart rate and sweating rate. These physiolog-

ical changes prepare the organism for a faster response to the stress

stimulus [20]. The human body can overreact to stressors that are

not life-threatening (work/academic pressure, family difficulties,

etc.). Phobias are good examples of how the fight-or-flight response

might be falsely triggered in the face of a perceived threat.

The ANS is composed of two main subsystems, the Sympathetic

Nervous System (SNS) and the Parasympathetic Nervous System

(PNS). The SNS is ultimately responsible for the fight-or-flight re-

sponse [27]. It innervates all vascular smooth muscle and sweat

glands. The stimulation of the SNS results in stimulation of sweat

glands, accelerated heart rate, and increased blood pressure, among

other effects. The PNS is responsible for the body’s rest and di-

gestion response when the body is relaxed, resting, or feeding. It

undoes the damage caused by the SNS activation during a stressful

situation. Stimulation of the PNS results in decreased heart rate

and blood pressure, among other effects. The interaction between

PNS and SNS can be quantified by analyzing changes in the related

physiological signals, e.g., via the Heart Rate Variability. Addition-

ally, the Electrodermal Activity (EDA) is used to measure changes

in the SNS subsystem [15, 16].

2.2 User recognition
The task of recognizing users can be seen as a pattern recognition

problem in which a user provides a set of physiological and/or

behavioral characteristics in order to match a previously registered

signature that allows the system to verify the subject itself [5]. This

task takes advantage of the fact that humans have natural traits

that are inherently unique for each individual. Typical applications

involve the identification of users bymeans of controlling the access

to resources such as transportation vehicles, computer systems, or

a building. In such systems, the users need to actively present

themselves to the system in order to be recognized.

2.3 Multi-task Learning
Multi-task learning (MTL) [6] is a specific machine learning (ML)

paradigm in which a model is jointly trained for multiple tasks (the

types of prediction or inference based on the problem at hand),

instead of training on a single task, as in the more traditional ML

paradigm of single-task learning. The architectural structure of

such models is composed of shared layers and task-specific layers.

The shared layers allow the model to be trained on multiple tasks,

and thus to share common information about the two tasks. This

common information should help the model to generalize better

compared to single-task models. To build such a model, an inner

relationship between the tasks should be present [41].

MTL models are typically performed via deep learning (DL)

models [23]. MTL models allow the DL network to learn more gen-

eralized representations by learning different (but related) tasks

jointly, resulting in a performance boost and a more robust model

ready to be deployed in the wild. The effectiveness of MTL models

can be seen in the fact that it utilizes more data from different learn-

ing tasks than single-task learning. Thanks to the larger volume of

data, MTL models can obtain improved knowledge sharing among

the different tasks, thus resulting in better performance and a lower

risk of overfitting each of the learning tasks. Some fields in which

MTL has been used successfully are natural language processing

(NPL) [9], computer vision [42] andwearable computing [30], where

the model architecture proposed showed that the shared network

architecture allowed the models to be more effective.

3 DATASET
To investigate the impact of joint learning of stress recognition

and user identification model using multi-task learning, we use the

publicly available WEarable Stress and Affect Detection (WESAD)
dataset [34]. WESAD includes data from 15 subjects (12 males and

3 females) recorded in a laboratory setting, each of the subjects

involved in the study experienced four conditions: Baseline – read-

ing task; Amusement – watching funny videos; Stress – exposure

to the TSST [21]; and Meditation, de-excite procedure for bringing
back the subjects to a more neutral affective state. The Baseline

condition was recorded for 20 minutes, Amusement for 392 seconds

(∼ 6.5 minutes), Stress for 10 minutes, and lastly Meditation for 7

minutes. The WESAD dataset contains motion and physiological

data recorded from a wrist and chest-worn device. For this partic-

ular article, the focus was on the EDA and BVP gathered via the

wrist-worn device, an Empatica E4 [14]. The Empatica E4 records

EDA and BVP at 4Hz and 64Hz sampling frequencies respectively.

4 METHOD
Fig. 1 shows the ML pipeline we designed. The pipeline consists

of five major steps: data acquisition, pre-processing, segmentation,
feature extraction and feature cleaning. More details of each step are

presented in following sections.
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Figure 1: Architectural Overview of the Data pipeline

4.1 Pre-processing and segmentation
Physiological signals collected using wearable devices can be af-

fected by artifacts that can hamper the reliability of the results. A

typical source of artifacts is temporary misplacement of the device

and motion artifacts. In order to reduce the presence of such ar-

tifacts, we applied a filtering procedure to the raw EDA and BVP

data. Specifically, as a standard practice in the literature [36], we

used a first-order Butterworth low-pass filter with a cutoff of 5Hz

for BVP and 0.4Hz for EDA.

We then segmented the filtered sensor data using windows with

a duration of 60 seconds and a 25% overlap. We then used the

derived segments to extract the features.

4.2 Feature extraction
We extracted a total of 77 features from EDA and BVP used in the

literature [32], to provide a high-level representation of the signals

for the tasks of interest: stress recognition and user identification. We

used the derived features in input to the machine learning models.

EDA features The EDA signal consists of two main components,

phasic and tonic [2]. The phasic component is a fast-changing signal

related to the momentary stimulus, while the tonic component is

slow-changing [2]. The EDA is characterized by peaks also known

as skin conductance responses (SCRs) [2]. We decomposed the EDA

using the cvxEDA algorithm presented in [18], which uses methods

of convex optimization to describe the activity of the autonomic

nervous system in response to strong affective stimulation. We

extracted a total of 50 features presented in the literature from the

EDA and its components using the publicly available tool EDA-
Explorer [11]. A summary of the features is presented in Table

1.

BVP features We derived 27 features from BVP to characterize

cardiovascular activity. We extracted features in the time and fre-

quency domain using the publicly available HeartPy tool [38] as

well as statistical features (e.g., mean, standard deviation), as a com-

mon practice in the literature [13]. The list of the BVP features and

their description is presented in Table 2.

4.3 Imputation and normalization
During the feature extraction procedure, it is possible that an accu-

rate computation of some features may not be possible due to miss-

ing, noisy or invalid data originating from the starting dataset. For

some features, the number of missing values amounted to 47.51%

of the total of the available data points.

We imputed the missing values using an iterative approach based

on multivariate regression. This approach involves defining a re-

gression model (Bayesian ridge regressor) to predict each of the

missing features as a function of all the other features. This method

has been reported to produce more accurate estimations compared

to the use of constants or statistical values [4].

We then normalized the features to reduce the data-related vari-

ability between subjects inside the dataset. The normalization is

used to scale the numerical values between a known range. This

allows the ML models to more quickly learn the optimal parameters

for each input. In this paper, we used a Min-Max normalization pro-

cedure on a per-feature basis, scaling the extracted features values

between 0 and 1.

4.4 Classification Pipeline
In this work, we experimented with a MTL strategy implemented

using DNNs to jointly solve the stress recognition and user identi-

fication tasks. We compare the performance of this model with a

single-task strategy and shallow classifiers. We describe below the

models and the evaluation procedure we used.

Shallow classifiers.We considered two widely used [16, 34] ma-

chine learning algorithms: Random Forest (RF) and Extreme Gradient
Boosting (XGBoost) as baselines. We chose these algorithms because

they do not require extensive hyperparameter tuning and are robust

against noisy data.

Multi-task learning (MTL) The MTL configuration is built us-

ing a Feed-forward Deep Neural Network (FDNN). In the MTL

architecture, shown in figure 2, the tasks of stress recognition and

user identification are unified into a single training procedure. The

FDNN consists of a fully connected layer with 100 hidden units, a

normalization layer, and a dropout layer. The initial fully connected

layer has the role of a size balancer, meaning that it has to bring

both inputs from AR and UR down to a commonly recognized size

so that later they can be fed into a shared layer. The normalization

layer is used as a model-optimization technique where the output of

all the neurons is normalized [33]. In addition, it allows for a higher

learning rate value to be used, thus improving the performance

at which the network can learn [7]. The dropout layer, configured

with a dropout rate of 0.2, is utilized to reduce the risk of model

overfitting. In the MTL configuration, a shared dense layer is used

to unify the outputs of the two branches. We used the ReLU acti-

vation function in the fully connected layers. We trained the MTL

models with a learning rate of 10
−3

, batch size of 15, and 50 epochs.

The implementation of the MTL model is publicly available and

can be accessed at [29].

Figure 2: Architectural Overview of theMTL pipeline
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Table 1: EDA features

Features Explanation

𝑝𝑒𝑎𝑘𝑠 # of peaks

𝑟𝑖𝑠𝑒_𝑡𝑖𝑚𝑒 avg rise time of the peaks

𝑚𝑎𝑥_𝑑𝑒𝑟𝑖𝑣 avg. value of the max derivative

𝑎𝑚𝑝 avg. amplitude of the peaks

𝑑𝑒𝑐𝑎𝑦_𝑡𝑖𝑚𝑒 average decay time of the peaks

𝑆𝐶𝑅_𝑤𝑖𝑑𝑡ℎ average width of the peak for Skin Conductance Response

𝑎𝑢𝑐 average area under the curve for the peak

𝑚𝑒𝑑𝑖𝑎𝑛 value separating the higher half from the lower half

𝑚𝑒𝑎𝑛 arithmetic mean

𝑠𝑡𝑑 standard deviation

𝑣𝑎𝑟 statistical variance

𝑠𝑙𝑜𝑝𝑒 slope of the regression line

𝑚𝑖𝑛 minimum value of the signal

𝑚𝑎𝑥 maximum value of the signal

𝑓 𝑑𝑚𝑒𝑎𝑛 mean value of the gradient on the EDA signal

𝑓 𝑑𝑠𝑡𝑑 standard deviation value of the gradient on the signal

𝑑𝑟𝑎𝑛𝑔𝑒 ratio between the largest and smallest values

Table 2: BVP features

Features Explanation

𝑏𝑝𝑚 beats per minute

𝑖𝑏𝑖 interbeat interval

𝑠𝑑𝑛𝑛 std. dev. of intervals between adjacent beats

𝑠𝑑𝑠𝑑 std. dev. of differences in adjacent R-R intervals

𝑟𝑚𝑠𝑠𝑑 root mean sq. of differences in adjacent R-R intervals

𝑝𝑛𝑛20 ratio of differences in R-R intervals > 20ms

𝑝𝑛𝑛50 ratio of differences in R-R intervals > 50ms

ℎ𝑟_𝑚𝑎𝑑 median absolute deviation

𝑠𝑑1, 𝑠𝑑2, 𝑆, 𝑠𝑑1
𝑠𝑑2

Poincaré analysis

𝑏𝑟𝑒𝑎𝑡ℎ𝑖𝑛𝑔_𝑟𝑎𝑡𝑒 breaths per minute

𝑙 𝑓 low frequency component

ℎ𝑓 high frequency component

𝑙 𝑓 /ℎ𝑓 low/high frequency ratio

𝑚𝑒𝑑𝑖𝑎𝑛 value separating the higher half from the lower half

𝑚𝑒𝑎𝑛 arithmetic mean

𝑠𝑡𝑑 standard deviation

𝑣𝑎𝑟 statistical variance

𝑠𝑙𝑜𝑝𝑒 slope of the regression line

𝑚𝑖𝑛 minimum value of the signal

𝑚𝑎𝑥 maximum value of the signal

𝑓 𝑑𝑚𝑒𝑎𝑛 mean value of the gradient on the BVP signal

𝑓 𝑑𝑠𝑡𝑑 standard deviation value of the gradient on the signal

𝑑𝑟𝑎𝑛𝑔𝑒 ratio between the largest and smallest values

Evaluation procedure. We evaluated all the models using the

Leave-One-Subject-Out (LOSO) validation procedure and the 𝐹1-

score metric with the macro average strategy, in which the metrics

for each label are calculated and their unweighted mean is found

[35]. The LOSO is an iterative approach in which the model is

trained using the data of all the participants except one that is used

for testing. The LOSO is a user-independent procedure suitable for

determining the robustness of the model on data of unseen users.
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5 RESULTS
5.1 Stress Recognition
In Table 3 the results of the LOSO evaluation are shown. The first

two columns (WESAD-RF and WESAD-AB) are results from the

Random Forest and Ada Boost classifier from [34], whilst the rest

of the columns represent the results achieved by the methods im-

plemented in this study. The XGBoost algorithm performs better

with respect to the RF methodology, for what concerns this study.

One main difference between the related-work results and the re-

sults in this work is that WESAD-RF and WESAD-AB utilized data

from a wrist device and from an ECG device, whereas the meth-

ods implemented in this work use only the data from the wrist

device. This may be the reason why the WESAD-RF scored 15.5

percentage points more than the RF implemented in this work

achieved. On the other hand, the XGB model (using only wrist

data) performed similarly to the related work models, which indi-

cates that the pre-processing pipeline and the extracted features

are informative enough to replicate the results of the related work.

Furthermore, from Table 3 it can be seen that the MTL approach

outperformed the best related-work model and the best baseline

models implemented in this study as well.

To investigate the MTL model behavior for various test users, we

present the learning curves from the LOSO evaluation in Figure 3.

The x-axis presents the training epoch, the y-axis presents the test

accuracy for the given epoch, the color-coded full lines represent

the test accuracy for various test users, and the dashed black line

represents the average test accuracy. From the figure, it can be seen

that there are two test users for which the MTL model performed

quite worse compared to the average performance. For the rest of

the users, the learning curves are quite stable, which signifies that

the MTL model is also stable.
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Figure 3: Learning curves for the MTL architecture

5.2 User-recognition
To evaluate the accuracy of the user-identification branch of the

MTL network, we need data of the same user both in the train and in

the test set, which is not plausible using LOSO evaluation. For that

reason, we implemented an additional split of the data. To avoid

Table 3: F1-score (%) MTL vs. Single task vs. Related work

WESAD-RF[34] WESAD-AB[34] RF XGB MTL

86.1 85.8 70.6 85.6 92.6

Table 4: F1-score (%) MTL vs. Single task

RF XGB MTL

52.0 40.0 29.7

temporal overlap between the train and the test data, we took the

first 5 minutes and the last 2.5 minutes of both stress and no-stress

data. Experiments were performed using LOSO approach again, but

one subset of the test user was added to the train data (i.e., the first

5 minutes), and the other subset (i.e., the last 2.5 minutes) was kept

for testing. The results of these experiments are presented in Table

4. While the MTL performed worse than the single-task models

in this evaluation, the results still indicate that all of the models

learn to recognize users to some extent, given that the accuracy

of a majority classifier ( a classifier that always predicts the most

frequent user-id) would be 6.67% (1 out of 15 users).
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