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a b s t r a c t 

The Sussex-Huawei Locomotion-Transportation Recognition Challenge presented a unique opportunity to the 
activity-recognition community to test their approaches on a large, real-life benchmark dataset with activities 
different from those typically recognized. The goal of the challenge was to recognize, as accurately as possible, 
eight locomotion activities ( Still, Walk, Run, Bike, Car, Bus, Train, Subway ) using smartphone sensor data. This 
paper describes the method we developed to win this challenge, and provides an analysis of the effectiveness of 
its components. We used complex feature extraction and selection methods to train classical machine learning 
models. In addition, we trained deep learning models using a novel end-to-end architecture for deep multimodal 
spectro-temporal fusion. All the models were fused into an ensemble with the final predictions smoothed by a 
hidden Markov model to account for temporal dependencies of the activities. The presented method achieved 
an F1 score of 94.9% on the challenge test data. We tested different sampling frequencies, window sizes, feature 
types, classification models and the importance of stand-alone sensors and their fusion for the task. Finally, we 
present an energy-efficient smartphone implementation of the method. 
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. Introduction 

The grand vision of wearable computing is that our devices will know
s much as possible about our context in order to provide the best pos-
ible service. Which activity is being performed at any given moment is
ertainly an important part of our context, which is why Activity Recog-
ition (AR) is intensely researched. Most research in AR is focused on the
uman body, dealing with activities such as walking, sitting and lying.
owever, transportation studies show that the average commute time

s up to 80 minutes a day [1] , and thus recognition of transportation
odes can be as important as recognition of body-related activities. 

The Sussex-Huawei Locomotion-Transportation (SHL) dataset
2] addresses this problem by providing a mixture of both activity
ypes – containing eight different activities: Still, Walk, Run, Bike, Car,

us, Train, Subway . In addition, the SHL dataset provides a unique
pportunity for researchers to test their AR approaches against a com-
on, real-life, large-scale benchmark dataset collected over a period of

our months, which allows for cross-study comparison and systematic
dvancement of the research field. To promote the dataset, a competi-
ion called the “SHL challenge ” was organized. The activities were to
e recognized using seven smartphone inertial sensors: accelerometer,
☆ The first two authors should be regarded as joint first authors. 
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yroscope, magnetometer, linear accelerometer, gravity, orientation
nd barometer. 

This paper offers a detailed description of our approach, which we
sed to win the SHL challenge by most accurately predicting the ac-
ivities on an unlabelled dataset. In Section 2 we present the related
ork and in Section 3 we describe the SHL dataset, including data or-
ering and splitting. The next four sections present our method, which
s schematically shown in Fig. 1 . Section 4 starts with how the data was
own-sampled and cut into windows, and how we derived additional
ata streams from the existing ones. Then it shows how we extracted
 large body of features from every data stream (altogether calculat-
ng 1696 features), and it ends up with the three-step feature selec-
ion process that we used to select the best-performing feature subset.
ection 5 presents both classical and deep learning (DL) algorithms that
e trained for the AR. The classical models used the selected features,
hile the DL model was trained on the raw data. For the DL we used a
ovel architecture: an end-to-end multimodal spectro-temporal ResNet
Multi-ResNet). All trained models were combined into an ensemble that
e used to generate predictions. 

Section 6 describes how we used a hidden Markov model (HMM)
o account for the temporal dependencies of sequential activities.
ection 7 discusses an energy-efficient smartphone implementation
il 2020 
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Fig. 1. Scheme of our method. 
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f our method. It proposes three different ways to increase energy-
fficiency while retaining classification accuracy. Section 8 presents the
xperimental results including an extensive analysis on how different
yper-parameters of our method affect its accuracy. These include se-
ecting which sensors to use, data sampling frequency (e.g., 100 Hz,
0 Hz or 10 Hz), window sizes (e.g., 60 seconds, 20 seconds or 10 sec-
nds), feature types (e.g., time-domain or frequency-domain), feature
election methods (e.g., wrapper or ranking methods), machine learn-
ng algorithms (e.g., deep or classical, end-to-end or feature-based mod-
ls), etc. Finally, in Section 9 we summarize our findings and discuss the
imitations of the method and our future work. 

The main contributions of the paper are: 

• A comprehensive method for AR, which was validated by winning
the SHL challenge. 

• A novel end-to-end DNN architecture (Multi-ResNet) proven suitable
for AR, a domain where DNNs are not yet established. 

• An extensive analysis of the method’s hyper-parameters, which can
facilitate adaptation to other problems. 

• Optimization of the method’s energy-efficiency for a smartphone ap-
plication. 

In summary, we believe the proposed method is a solid baseline for
ther authors who attempt to work on the SHL dataset and similar AR
roblems. 

. Related work 

.1. Classical AR methods 

The AR domain has been thoroughly explored in the past using body-
orn sensors, ambient sensors and combinations of both. Here, we focus
nly on the body-worn sensors commonly found in smartphones, since
hose are most suitable for AR today due to the omnipresence of smart-
hones. The most frequent AR task is classifying activities in relation
o movement, e.g., walking, running, standing still and cycling [3,4] .
ost of the multimodal (multi-sensor) solutions use classical ML algo-

ithms (e.g., Random Forest - RF, Support-vector machines - SVM, and
-nearest neighbours - KNN) to build models from features that are ex-
racted from each modality independently. These models can be built
sing fusion in the feature space, i.e., all features are treated uniformly
48 
5,6] . There also exists fusion in the decision space, where models are
uilt for each feature type with respect to the modality, and the final
ecision is output by a meta-model [7,8] . 

.2. Deep AR methods 

In the recent years, many attempts at AR were also made with DL
nd-to-end architectures [9,10] . The focus was on convolutional net-
orks (CNN), which can automatically capture hierarchical feature rep-

esentations of the data due to their stacked filtering layers [11] . CNNs,
n combination with subsampling layers (e.g., pooling layers) and fully
onnected layers, are a very powerful end-to-end learning architectures
12–14] . In 2016, Ordonez et al. introduced the DeepConvLSTM [15] ,
n architecture that stacks CNN layers over a multimodal long short-
erm memory (LSTM) recurrent neural network (RNN) for AR [16] . The
STM layers allow for the model to learn the temporal dynamics in the
nput data by utilizing specific gates. Unlike HMMs, which are mod-
lled on the Markovian assumption and have a finite number of hidden
tates, LSTMs have the advantage of a continuous space memory, which
heoretically allows them to base their predictions on arbitrarily long
ast observations [17] . Most recently, Murahari et al. [18] experimented
ith attention mechanisms in the DeepConvLSTM, which improved its
erformance in the AR domain by a few percentage points. 

.3. Transportation recognition methods 

The approaches that recognize transportation modes utilize very sim-
lar techniques to the standard AR approaches. For example, Martin et al.
19] developed a method for real-time prediction of the transportation
ode using smartphone GPS and accelerometer data. They combined
imensionality reduction methods (PCA) and ML algorithms (KNN and
F) to accurately classify five modes of transportation (i.e., walking,
iking, car, bus and rail). Fang et al. [20] developed a method for the
ecognition of transportation and vehicular modes using smartphone ac-
elerometer, magnetometer and gyroscope. Their solution is based on
ecision trees, KNN and SVM. Reddy et al. [21] utilized a combination
f a decision tree followed by a first-order discrete HMM to account
or the temporal dependence between the labels. Similarly, Hemminki
t al. [22] developed an accelerometer-based transportation recognition
ethod for smartphones capable of recognizing six different modes (i.e.,

tationary, walking, bus, train, metro and tram). Their solution is based
n a combination of AdaBoosting and a discrete HMM. 

.4. SHL Challenge methods 

A comprehensive overview of all AR methods competing at the SHL
hallenge is presented in the summary paper by Wang et al. [23] . Over-
ll, there were nineteen submissions, of which eleven used only classi-
al AR methods, and eight either used only DL or included DL methods.
rom the top five methods, the teams “S304 ” and “Confusion Matrix ”
chieved a similar F1 score of 87.5%. “Confusion Matrix ” used an RF
odel and then smoothed the estimation with majority voting [24] .

304 used a multi-layer perceptron neural network and then smoothed
he estimation with an HMM [25] . The third placed team “Tesaguri ”
chieved an F1 score of 88.8% by applying CNNs to the spectrogram of
he sensor data [24] . Our two teams “JSI-Deep ” [26] and “JSI-Classic ”
27] were the only two teams that achieved an F1 score over 90%. More
pecifically, JSI-Classic achieved an F1 score of 92.4%, by combining
ree-based XGBoost with advanced feature extraction and feature selec-
ion techniques. “JSI-Deep ” achieved the highest F1 score of 93.9% by
sing a meta method that utilizes both classical and spectrogram-based
nd-to-end deep learning methods merged in an ensemble whose final
redictions are smoothed by a discrete HMM. This study presents a de-
ailed analysis of the “JSI-Deep ” and “JSI-Classic ” methods with a few
dditional novelties including a novel spectro-temporal end-to-end DL
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Fig. 2. Activity distribution of the train and test 
datasets. 
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Table 1 

Average duration of each activity. 

Activity Still Walk Run Bike Car Bus Train Subway 

Length [mins] 14 12 12 20 60 34 64 34 
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rchitecture, and a methodology for making our solution more energy-
fficient at the cost of a small decrease in accuracy. The “updated JSI-
eep ” method presented in this study, achieved an F1 score of 95.2%
n the challenge test data. 

. SHL challenge dataset 

.1. General description 

The SHL Dataset is one of the largest AR datasets, suitable for a wide
ange of studies in fields such as transportation recognition, AR, mobil-
ty pattern mining, localization, tracking and sensor fusion [2] . It was
ecorded over a period of 7 months by 3 participants engaging in 8 dif-
erent activities in a real-life setting in the United Kingdom. A subset of
his dataset was used for the SHL Challenge and was subsequently used
hroughout this work. The dataset for the SHL challenge is available
n the challenge website [28] and is described in detail in the baseline
aper [29] . 

All of the data was provided by a single smartphone, worn by the
ame user in his trouser pocket. Data came in five different modalities:
cceleration, magnetic field, angular velocity (measured by gyroscope),
ir pressure and the phone’s current orientation. The acceleration was
roken down into two additional data streams: the acceleration as the
esult of gravity, and the acceleration without the gravity component
linear acceleration). Notably, sensors that could identify the user’s lo-
ation – GPS, Wi-Fi, cell network – were not included. 

The competitors were provided with a train and a test ( SHLtest ) set.
he former came with labelled activities, while the labelling of the

atter was the competition’s goal. However, by the time of writing of
his paper, the SHLtest set labels were publicly released, allowing us
o present the results on both data sets. All together, there were 82
ecorded days (62 for training, 20 for testing). This provided 16,310
inutes, or roughly 272 hours, of data. 

There were 8 activities of interest: Still, Walk, Run, Bike, Car, Bus,

rain, Subway . The activity distribution in the train set ( Fig. 2 ) was
ostly uniform, with the exception of the Run activity, which was (un-
erstandably) under-represented. The SHLtest set, on the other hand,
as skewed towards the Car, Bus and Still activities. To simulate the

ompetition conditions, we treated this difference in the distributions
s an unknown and made no steps to make them more similar. 

Example samples of the acceleration and magnetic field data are
iven in Fig. 3 . Both exhibit a periodic and distinct pattern with dif-
erent magnitudes and frequencies when the user is either walking, run-
ing or cycling. Acceleration data also captures the noise present when
riving in vehicles. In addition, the magnetic field sometimes wildly os-
illates while the user is in the train or subway, which can be potentially
xploited for recognizing them. 

.2. Data ordering and data splits 

The recording scenario of the SHL dataset was relatively natural,
ith the test subject moving around the city for several days (as op-
49 
osed to the scenarios typically performed and recorded in a lab). This
esulted in activities that on average lasted a long time ( Table 1 ), with
ensible transitions from one to another ( Fig. 4 ). Both properties were
xploited for the HMM smoothing ( Section 6 ) and for energy-efficiency
ptimization ( Section 7 ). 

The data was split into one-minute segments, which were shuffled
y the dataset’s authors. The order of the one-minute segments was pro-
ided for the train set, but not for the SHLtest set. We assume this was
one in order to enforce the use of a window length of less than or equal
o one minute when classifying the data. 

Our first step was to order the train set using the provided ordering.
hen we split it into an internal validation set ( ivalid ), internal test set
 itest ) and internal train set ( itrain ) – using the first 25%, second 25%
nd last 50% of the train set, respectively. The itrain set was used to train
ur models. The ivalid set was used to select the appropriate features,
ampling frequency and window size, and to train a meta-model. The
test set was used to estimate the performance of our model. All three
ets were checked to ensure they roughly retained the same activity
istribution as the original train set. We used the competition’s SHLtest

et for the final evaluation of our method. Note that the ordering of the
ata before making the split for internal evaluation was a key step, as
therwise two subsequent data samples (which are usually very similar)
ould frequently be one in the itrain set and the other in the itest set –

eading to model overfitting. 
The ordering of the SHLtest set was not required for our base model;

owever, at least locally ordered data was needed for the additional
MM smoothing step in an attempt to further increase the classification
erformance. Therefore, we had to create a method that could reassem-
le the one-minute segments into the original order. 

Intuitively, data at the end of one segment should closely match the
ata at the beginning of the next one. A simple procedure can therefore
e applied: 

step 1: Select a random one-minute segment x . 
step 2: Find the one-minute segment y that has the minimum distance

from its first sensor reading to the last sensor reading of x . The
distance used is the Euclidean distance with different sensors
weighted using empirically determined weights. 

step 3: If the minimal distance is lower than a predetermined threshold,
assume that y follows x and repeat step 2 with y as the new
x . If not, assume that the recording was interrupted and start
assembling a new sequence of data repeating step 1. 

On the SHLtest set, we produced 42 sequences of data that turned
ut (when the ordering was revealed after the competition) to be 99.8%
orrectly sorted, with roughly 10 instances out of place. The order of
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Fig. 3. Acceleration and magnetic field data samples (both taken from the x-axis). A four-second sample is shown for each activity. 

Fig. 4. All activities, connected if the probability of a transition from one to 
another is more than 30%. 
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he sequences themselves is largely irrelevant, however, as each had
he HMM smoothing applied independently. 

. Pre-processing and feature extraction 

This section describes the pre-processing step – windowing, down-
ampling and deriving the virtual sensor streams – as well as the ex-
raction of features used for training the classical ML models and their
election process. The DL methods use the raw data instead of features
ere described. 

.1. Data frequency and window size 

The data was originally sampled using a 100 Hz sampling rate for
ll sensors. All sensor readings and activity labels coincided at the same
imestamps. This frequency was previously empirically determined as
ore than adequate for most AR tasks [30,31] . However, the high sam-
ling frequency presents two practical problems: 1) the further steps
notably the feature extraction) are slow due to the amount of data that
eeds to be processed; and 2) if this method would later be implemented
50 
n a smartphone, the required sampling frequency and the constant pro-
essing would shorten the battery life of the device. 

To mitigate these issues, we first down-sampled the data. To deter-
ine a sensible frequency, we tested different frequencies using two
ifferent algorithms: a simple RF using 100 trees and frequency do-
ain features (which were fastest to calculate), and the Multi-ResNet DL
odel presented in Section 5.2 . We chose the RF as the baseline method

ecause it is robust to noise, relatively fast to train and frequently used
n the AR domain. 

The next decision was to select the appropriate window size, which
s used to split the sensor data into windows which are either fed directly
o the Multi-ResNet or used for the feature extraction for the classical
L algorithms. Longer windows naturally contain more data and are

xpected to enable greater classification accuracy. Shorter windows, on
he other hand, can detect an activity change faster. We once again used
he same algorithms (RF and Multi-ResNet) to test the different window
izes, and repeated these tests with different frequencies. The results of
hese experiments are shown in Section 8.1 . 

The activity label was calculated as the majority of the per-sample
abels (with the frequency of 100 Hz) in each window. The same pro-
edure was used for testing, calculating the majority-label accuracy . This
ethod was used throughout this work, as it is convenient to calculate

nd is used in most other works in the AR domain. Alternatively, one
an compare the model’s predictions with the per-sample labels, calcu-
ating the per-sample accuracy – which was used by the SHL challenge
rganizers. The majority-label accuracy is in general slightly higher, but
he differences are nearly negligible ( Section 8.1 ). 

.2. Virtual sensor streams 

The SHL dataset provides 20 different sensor streams, if we are indi-
idually counting each axis of the 7 provided sensors. From these origi-
al sensor streams it is possible to derive additional sensor streams that
re useful for the AR. The subsequent steps treat these derived sensor
treams like any of the original ones. 

The first derived sensor stream is the magnitude Eq. (1) of the data.
t was calculated for all the data coming from tree-axis sensors (acceler-
tion, linear acceleration, gravity, magnetic field and angular velocity).

 = 

√
𝑥 2 + 𝑦 2 + 𝑧 2 (1)
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Second, the orientation data originally presented in the quarternions
ormat [ q w , q x , q y , q z ] was converted into the Euler angles – roll, pitch,
aw. While the quarternions have some desirable mathematical proper-
ies, the Euler angles are more intuitive and can be individually inter-
reted (one value for rotation around each axis). To make this transfor-
ation, we used the standard formulas for the task: 

𝑖𝑡𝑐ℎ = arctan 
( 2( 𝑞 𝑤 𝑞 𝑥 + 𝑞 𝑦 𝑞 𝑧 ) 
1 − 2( 𝑞 𝑥 𝑞 𝑥 + 𝑞 𝑦 𝑞 𝑦 ) 

) 

(2)

𝑜𝑙𝑙 = arcsin 
(
2( 𝑞 𝑤 𝑞 𝑦 − 𝑞 𝑧 𝑞 𝑥 ) 

)
(3)

𝑎𝑤 = arctan 
( 2( 𝑞 𝑤 𝑞 𝑧 + 𝑞 𝑥 𝑞 𝑦 ) 
1 − 2( 𝑞 𝑦 𝑞 𝑦 + 𝑞 𝑧 𝑞 𝑧 ) 

) 

(4)

Third, additional sensor streams were created by rotating the ac-
elerometer and magnetometer data from the phone’s coordinate sys-
em to the “world ” (North-East-Down) coordinate system. This could be
seful for determining, for example, if the magnetic field is coming from
bove or below, as the same axis is always pointed upwards. The trans-
ormation was done by multiplying the current values Eq. (6) with the
oordinate system change matrix Eq. (5) , using quarternions to deter-
ine the current orientation [32] . 

 𝑁𝐵 = 

⎡ ⎢ ⎢ ⎣ 
1 − 2( 𝑞 2 

𝑦 
+ 𝑞 2 

𝑧 
) 2( 𝑞 𝑥 𝑞 𝑦 − 𝑞 𝑤 𝑞 𝑧 ) 2( 𝑞 𝑥 𝑞 𝑧 + 𝑞 𝑤 𝑞 𝑦 ) 

2( 𝑞 𝑥 𝑞 𝑦 + 𝑞 𝑤 𝑞 𝑧 ) 1 − 2( 𝑞 2 
𝑥 
+ 𝑞 2 

𝑧 
) 2( 𝑞 𝑦 𝑞 𝑧 − 𝑞 𝑤 𝑞 𝑥 ) 

2( 𝑞 𝑥 𝑞 𝑧 − 𝑞 𝑤 𝑞 𝑦 ) 2( 𝑞 𝑦 𝑞 𝑧 + 𝑞 𝑤 𝑞 𝑥 ) 1 − 2( 𝑞 2 
𝑥 
+ 𝑞 2 

𝑦 
) 

⎤ ⎥ ⎥ ⎦ (5)

 

 

 

 

𝑥 

𝑦 

𝑧 

⎤ ⎥ ⎥ ⎦ 
𝑤𝑜𝑟𝑙𝑑 

= 𝑅 𝑁𝐵 

⎡ ⎢ ⎢ ⎣ 
𝑥 

𝑦 

𝑧 

⎤ ⎥ ⎥ ⎦ 
𝑠𝑒𝑛𝑠𝑜𝑟 

(6)

In total we added fourteen derived data streams – five magnitudes,
hree Euler angles and six streams for rotated acceleration and magnetic
eld data (three axes each). 

.3. Feature engineering 

Features were individually calculated for each data stream, with
ome features using data from all three axes of the same sensor at the
ame time. 

Features can be roughly split into two categories: frequency-domain
nd time-domain. In aggregate, a total of 1696 features were computed
nd used in the subsequent steps. 

.3.1. Frequency-domain features 

These features were calculated using the power spectral density
PSD) of the signal, which is based on the fast Fourier transform (FFT).
SD characterizes the frequency content of a given signal and can be
stimated using several techniques. The simplest one is to use a peri-
dogram, which is obtained by taking the squared-magnitude of the FFT
omponents. An alternative to a simple periodogram is Welch’s method,
hich is also widely used and commonly considered superior to the pe-

iodogram. It computes the average of the periodograms of multiple
verlapping segments of the signal to reduce the variance of the PSD. In
ur work, we opted to use Welch’s method to obtain the PSD. 

Using PSD is only suitable when the signal is clearly periodic. We
hose to test windows of length ranging from 5 to 60 seconds. These
ere long enough to contain several periods of human motion as well
s vehicle vibration. Sample periodical patterns can be clearly seen in
ig. 3 for the activities: Walk, Run, Bike, Car and Bus. 

We implemented frequency-domain features as given in related work
33] . The following features were computed. 

• Three largest magnitudes. Three peaks with the largest magnitude
from the PSD were considered. These tell us the dominant frequen-
cies in the signal. Both the magnitude values and the frequencies (in
Hz) were taken as features. 
51 
• Energy. Calculated as the sum of the squared FFT component mag-
nitudes. The energy was then normalized by dividing it with the
window length. 

𝑒𝑛𝑒𝑟𝑔𝑦 = 

1 
𝑁 

𝑁−1 ∑
𝑛 =0 

|𝑥 ( 𝑛 ) |2 , (7)

where x ( n ) is the n-th FFT component and N is the parameter speci-
fying the number of FFT components to compute. 

• Entropy. Calculated as the information entropy of the normalized FFT
component magnitudes. It helps in discriminating between activities
with a similar energy feature. 

𝑒𝑛𝑡𝑟𝑜𝑝𝑦 = − 

𝑁−1 ∑
𝑛 =0 

𝑥 ( 𝑛 ) log ( 𝑥 ( 𝑛 )) (8)

• Binned distribution. A normalized histogram, which is essentially the
distribution of the FFT magnitudes into 10 equal sized bins ranging
from 0 Hz to 25 Hz. 

• Skewness and kurtosis. Calculated on the PSD. Skewness and kurtosis
describe the shape of the distribution of the PSD. More precisely,
skewness tells us about the symmetry of the distribution while kur-
tosis tells us about its flatness. 

.3.2. Time-domain features 

As the time-domain features, we used the expert features previ-
usly used in our other works in similar domains [6,34] , including one
reviously-won competition [3] . 

A description and analysis of the expert features can be found in our
revious paper [6] . In summary, the magnitude data stream provided
he information on the intensity of the activity, while the individual
xes provided the information on the orientation of the device and sub-
equently on the position of the user. 

Some features come from statistics and describe the intensity and
hape of the signal: the mean, variance, Pearsons correlation between
xes, their covariance, skewness, kurtosis, quartile values and range be-
ween them. Others have a more physics-based interpretation, such as
elocity and kinetic energy. The rest came from expert knowledge of
he domain: the number and height of peaks in the window, the signal’s
ean, its sum and squared sum, and the number of times the signal

rosses its mean value. 
In addition, we used a subset of features from the tsfresh library

35] that seemed interesting, but were not included in our set of ex-
ert features. These features were: the signal minimum, maximum, the
umber of times the signal is above/below its mean, the signal’s mean
hange and its different autocorrelations (correlations of the signal with
 delayed version of itself, for different delays). 

Some of the features were calculated on the unfiltered data streams,
hile some were calculated on data filtered with either a simple low-
ass or band-pass filter. The filters were calculated using Eqs. (9) and
10) , where x represents the raw data and y represents the filtered data.

• Low-pass filter. Removes the low frequencies from the data. Useful for
filtering out, for example, the gravity component of the acceleration.

𝑦 𝑖 = 𝛼𝑥 𝑖 + (1 − 𝛼) 𝑦 𝑖 −1 (9)

• High-pass filter. Removes the high frequencies from the data. Useful
for filtering out noise. 

𝑦 𝑖 = 𝛼𝑥 𝑖 + 𝛼( 𝑥 𝑖 − 𝑥 𝑖 −1 ) (10)

• Band-pass filter. This filter simply applies both low and high pass
filters one after another. 

.4. Feature selection 

Given the relatively high number of features (1,696), we used a fea-
ure selection procedure to remove the features that do not contribute
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o the accuracy of the model and only increase the odds for overfitting.
alculation of fewer features also contributes to the computational ef-
ciency of our solution and simplifies its implementation. Our feature
election consisted of three steps. 

In the first step, the mutual information [36] between each feature
nd the label was estimated using the ivalid set, where larger mutual in-
ormation means higher dependency between the feature and the label.

After the features were sorted according to this value, correlated fea-
ures were removed based on the Pearson correlation coefficient [37] .
his showed that roughly half of the features were redundant, which
as expected due to the number of features and the similarity of the
ata streams. To make the process computationally feasible, only 100
eatures were taken at a time, starting with those with the highest mu-
ual information with the label. Correlation was then calculated for each
air. If the correlation was higher than a certain threshold (experimen-
ally determined as 0.8), the feature with lower mutual information was
iscarded. After that, the next 100 features were added to the remaining
et and the correlation between each pair was calculated again. 

In the final step, features were selected using a greedy “wrapper ” al-
orithm. An RF model was first trained using only the feature with the
ighest mutual information. The trained model was used to predict la-
els for the ivalid set, and the prediction accuracy was calculated. Then
he second-best feature was added and the model was trained again.
f the accuracy on the ivalid set was higher than without using this
eature, the feature was kept. This procedure was repeated for all re-
aining features. This strict selection initially led to overfitting to the

valid set (accuracy was much higher compared to the itest set), so the
ondition for keeping a feature was made less strict: the feature was
ept if the accuracy did not decrease by more than an experimentally
et improvement threshold. Using this rule, overfitting to the ivalid set
as reduced. The results after each feature selection step are shown

n Section 8.2 . 

. Classification models 

Different classical ML algorithms and an end-to-end DL architec-
ure were trained and tested. After training the individual models, we
ombined them in an ensemble which further increased the classifi-
ation performance. In this section we describe the models, and in
ection 8.3 and Section 8.4 show the results. 

.1. Classical models 

For the classical models, we used the ML algorithms as imple-
ented in the scikit-learn ML toolkit [38] . Each of these algorithms
sed features as selected in Section 4 . The models were tested both
ith the default hyper-parameter values and with those found us-

ng a 2-fold randomized parameter search. The randomized parame-
er search was performed using the following procedure: for each al-
orithm, parameter settings were randomly sampled from distributions
redefined by an expert. Next, models were built with the specific pa-
ameters and then evaluated using a 2-fold validation procedure on
he train data. This search was repeated 10 times using different folds.
n Section 8.3 we report the averaged results, but we kept the best-
erforming parameters for the final models. We experimented with the
ollowing ML algorithms: Decision Tree [39] , RF [40] , Naïve Bayes [41] ,
NN [42] , SVM [43] , Bagging - using Decision Trees [44] , Adaptive
oosting (AdaBoost), Extreme Gradient Boosting (XGB) and Multilayer
erceptron (MLP) [45] , label switching both with MLPs [46] and with
Ts [47] . 

.2. Deep learning models 

We propose a deep multimodal spectro-temporal ResNet (Multi-
esNet) and describe it in Section 5.2.2 . To compare its performance

o simpler DL architectures, we describe and test them as well. 
52 
.2.1. Baseline deep learning models 

To provide an end-to-end baseline comparison for our Multi-ResNet,
e implemented five DL networks: a network with four CNN layers fol-

owed by two fully connected layers to output the final activity pre-
iction (CNN-4); two similar networks with eight and sixteen CNN lay-
rs (CNN-8 and CNN-16); one network with two LSTM layers followed
y two fully connected layers (LSTM-2); and one ConvLSTM mimick-
ng the architecture proposed by Ordonez et al. [15] , CNN-4-LSTM-2.
ach CNN layer is followed by a batch normalization layer for reducing
nternal covariate shift [48] , and a ReLU activation layer [49] , which
peeds up the training process compared to other activation layers (e.g.,
anh). To avoid overfitting, L2 regularization and dropout was used for
he dense layers. The training of the networks was fully supervised, by
ack propagating the gradients through all the layers. The parameters
ere optimized by minimizing the cross-entropy loss function using the
dam optimizer. The models were trained with a learning rate of 10 −4 
nd a decay of 10 −4 . The batch size was set to 1024 and the maximum
umber of training epochs was set to 75. The models were trained with
arly stopping on the ivalid data. 

.2.2. Multimodal spectro-temporal resnet 

Our deep multimodal spectro-temporal ResNet (Multi-ResNet) is de-
icted in Fig. 5 . The structure is based on the idea by He et al. [50] for
raining very deep end-to-end networks for image recognition by us-
ng shortcut (residual) connections. Using the residual networks, Wang
t al. [51] proposed an end-to-end unimodal time-series classification
etwork. Our network builds upon Wang’s work with two additional
ovelties, which are key factors for a successful AR system, i.e., multi-
odal and spectro-temporal information fusion. 

For each sensor channel, the network extracts channel-specific
pectro-temporal information: the spectral information is extracted by
alculating the spectrogram in decibels, i.e., log10 of the amplitude
pectrogram, for each input window; the temporal representation is
xtracted by the residual blocks that contain CNN layers with 1-
imensional filters. The shortcut connections in the residual blocks com-
at the gradient vanishing problem, i.e., the more layers there are, the
maller learning update each layer receives, thus the harder the training
s [30]. For example, for a 20 channel input (3 accelerometer, 3 gyro-
cope, 3 gravity, 3 linear acceleration, 3 magnetometer, 4 orientation
nd 1 pressure channel), 4 residual blocks per channel and 3 CNN lay-
rs per residual block, the network will have 240 CNN layers (20 x 4
 3) through which the gradient needs to be propagated, thus we need
 mechanism to avoid the gradient-vanishing problem [52] . Each CNN
ayer is followed by a batch normalization layer, and a ReLU activation
ayer. Each residual block ends up with an average pooling layer which
s used for dimensionality reduction. The output of the channel-specific
ayers, i.e., channel-specific spectro-temporal information, is then fused
y two dense (fully connected) layers. L2 regularization and dropout
as used for the dense layers. The final output of the Multi-ResNet is
rovided by a softmax layer, which represents a class probability for
ach of the eight different classes. The network was trained using the
ame learning procedure (loss function, optimizer, learning rate, decay,
atch size and early stopping) as the baseline DL models. 

The original “JSI-Deep ” method that won the SHL challenge used
nly the spectrogram part of the Multi-ResNet, i.e., the spectrograms
ere calculated for each sensor channel and were fed into fully con-
ected layers, which provided the final predictions [26] . In this paper,
hat architecture is referred to as DNN-Spectrogram, in order to pro-
ide comparison between the two DNN architectures (Multi-ResNet vs.
NN-Spectrogram). 

.3. Ensemble 

Finally, we experimented with an ensemble of models built using a
tacking approach. The base models in the stacking ensemble are the
lassical models and the Multi-ResNet, described in the previous two
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Fig. 5. Proposed Deep Multimodal Spectro-Temporal ResNet (Multi-ResNet). 
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Fig. 6. Top row shows a sequence of Train and Bus classifications. They are 
corrected using HMM smoothing into a sequence of only Train activities shown 
below. 

Fig. 7. A small part of the HMM model, where the hidden states represent true 
activities and the visible states are the recognized activities. 

Fig. 8. Iterative HMM predictions. The top row represents the classified activi- 
ties, and the bottom one represents the activities predicted by the HMM smooth- 
ing. Each group represents one step. In each step, the sequence is iteratively 
lengthened and only the last instance is corrected. 
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ubsections. The meta learner is a model that takes as input the outputs
f base models. We evaluated meta-models built with the different ML
lgorithms: RF, Gradient Boosting, XGB, AdaBoosting, SVM, KNN, Gaus-
ian Naïve Bayes and Decision Tree, and tuned the hyper-parameters.
ach base model was trained on the itrain set and each meta-model
as trained on the base models’ output for the ivalid set. The hyper-
arameter tuning was again performed using a 2-fold randomized pa-
ameter search on the train data. 

. Hidden markov model smoothing 

In all experiments so far, all the windows were classified indepen-
ently from one another. This approach discards all the information on
emporal dependencies between them. If a user is currently on a train,
or example, but the next window is classified as Bus , followed by an-
ther Train classification, it is far more likely for Bus to be a misclassi-
cation than a vehicle switch ( Fig. 6 ). 

This motivated us to use an extra step after classification, where the
emporal information was taken into account. This was done using an
MM model. In this model (a small part of it shown in Fig. 7 ) the hidden
53 
tates represent the actual activity, while the visible output represents
he classified activities. 

The parameters of this model are the transition probabilities between
he states and the probabilities of observed emissions in each state. The
ormer can be estimated from the transition matrix of the itrain set (ma-
rix of probabilities that one activity is followed by another), while the
atter from the confusion matrix of the ivalid set. 

The HMM smoothing was performed using the Viterbi algorithm in
he hmmlearn library [53] . This algorithm uses all the available data for
correcting ” each instance. From the viewpoint of a single instance, it
eans that all of its predecessors and successors must be known in order

o “correct ” it. This is, however, impractical for a real-time monitoring
pplication implemented on a smartphone. 

Having the past predictions corresponds to saving predictions as they
re made, while having the future predictions means that the HMM
moothing must happen with a delay. To test the usefulness of the HMM
moothing in a practical setting, we tested how different delays (and
aving no delay – Fig. 8 ) affect the accuracy of the HMM predictions.
o “correct ” an instance in these tests, the algorithm was run only on
he predictions that happened before the instance and on a number of
nstances (equal to the delay) that happened after it. The results are
hown in Section 8.5 . 

. Energy-efficient solutions 

The previous sections were focused on how to achieve as high an
ccuracy as possible using a meta-model in combination with the HMM
moothing. To do so, we used all the available data from every sensor.
n practice, however, turning on all the sensors of a smartphone will
uickly drain the battery of the device, making the application undesir-
ble from the user’s point of view. It would thus be beneficial to find
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olutions that are almost as good in terms of accuracy, but are much
ore energy-efficient. 

There are four most frequently used methods to reduce the energy
onsumption: using only a sensor subset, periodically turning the sensors
n and off ( duty-cycling ), reducing the sampling frequency and reducing
he processing power required for the classification. In this section we
riefly describe – and apply on the SHL dataset – a general methodol-
gy that can quickly create energy-efficient solutions using the first two
ethods without any expert knowledge of the domain. This methodol-

gy is described in detail in our previous works [54,55] . The last two
ptimization modalities (sampling frequency and processing power re-
uired) are briefly discussed, using simple heuristics, at the end of the
ection. 

Trying to estimate the energy consumption of a smartphone device
an be surprisingly difficult, as: 1) it is heavily device-dependent; and
) energy consumption of different components do not add up linearly.
or example: accelerometer and gyroscope active together typically con-
ume less energy than the sum of their individual consumptions. In order
o avoid both complications, we simply measured what proportion of the
riginal data we needed for a particular solution. This is a loose estimate
f the energy efficiency, as the more data a system needs, the more en-
rgy it must consume to both collect and process it. This simplification is
lso appropriate because all sensors present in this dataset individually
onsume roughly the same amount of energy. Note, however, that the
ame methodology could be used with real energy estimates [56,57] if
ne would be interested in a particular device. 

The HMM smoothing cannot be directly integrated into the method-
logy, so we omitted this post-processing step when searching for the
olutions and then used it only on solutions found. Additionally, we used
he ensemble without the DL model, as it can be impractical to use it on
 smartphone. While recent research [58,59] show that DL models can
e adapted to make them more resource efficient and thus more suitable
or smartphones, we left such adaptations of our models to future work.

.1. Choosing sensor subset 

Instead of constantly using all five sensors, using only a subset of
hem would increase the energy-efficiency of the system. The individ-
al performances of all sensors are listed in Table 6 . Deriving a table
f all possible sensor combinations ( 2 5 = 32 ) is likewise simple. Doing
o reveals that individually the accelerometer is the sensor with by far
he highest accuracy, and that the accelerometer with the magnetome-
er make the best pair. It shows that the contribution of other sensors
apidly falls afterwards, but that they are all required for achieving the
ighest possible accuracy. 

Further improvements can be made by optimizing the sensors for
ach activity. For example, the magnetometer and barometer might only
e useful in vehicles but not while walking or running. We can therefore
reate an assignment from each activity to a different sensor set, and
henever an activity is classified, the corresponding sensors are turned
n. Since the activities last for minutes, the cost of switching a sensor
n/off is minimal. 

The problem of finding the ideal sensor-subset-to-activity assignment
s not trivial. Not only are there (2 5 ) 8 ≈ 10 12 different assignments,
iven 5 sensors and 8 activities, but it can be time consuming to test an
ndividual one, as one has to go through the whole dataset, classifying
ach instance and switching sensor streams and models in the process.
ote that trying to circumvent this by testing how a sensor subset works

or recognizing an activity, and then aggregating this performance for
very activity, makes a poor approximation. In practice, a misclassifica-
ion can turn on sensors that are inappropriate for the current activity,
eading to further errors. 

To deal with both problems (the number of assignments and their
valuation) we used the method from our previous work [54] . In short,
t uses the steady-state of a Markov-chain model to predict how would
n assignment behave in terms of both energy and accuracy. To calcu-
54 
ate the parameters of the Markov-chain model, it uses the matrix of
ransition probabilities between the activities and the different models
that use different sensor subset) confusion matrices. It then uses a ge-
etic multi-objective algorithm (NSGAA-II [60] ) – the objectives being
nergy consumption and accuracy – evaluating every assignment with
he Markov-chain model. This combination can quickly search through
he problem space and efficiently find a set of non-dominated solutions.

Doing so generates an approximation for the Pareto front of solu-
ions, each solution representing a different trade-off between accu-
acy and energy consumption. From this set of trade-offs, a system de-
igner can pick one that is suitable for his application requirements.
ection 8.7 presents the Pareto front for the SHL dataset and some sam-
le solutions from it. 

.2. Duty-cycling 

As shown in Table 1 , most of the activities are relatively long-lasting.
herefore turning the sensors off when an activity is recognized and then
urning them back on a few minutes later could be a way to further opti-
ize the energy consumption of the system. The system simply assumes

hat the activity has not changed while the sensors were turned off. This
rocess, called duty-cycling , can similarly to before, be enhanced by op-
imizing the cycle length for each activity individually. Intuitively, long
asting activities should have longer cycles, and vice versa. Additionally,
f an activity is often followed by a short-lasting activity, the duty-cycle
ength should also be shorter, so as not to miss the following short activ-
ty entirely. Finally, one has to consider the effect of misclassifications,
s misclassifying an activity might subsequently cause a wrong duty-
ycle length. 

This once again introduces two problems: 1) combinatorial complex-
ty, as there are many possible duty-cycle-length-to-activity assignments
l 8 , if the maximum cycle length is l ; 2) modelling the performance of

he system given a duty-cycle-length-to-activity assignment. We solve
oth problems by using our previous work [55] , where we once again
se Markov-chain calculus (although in an altogether different way) to
etermine the effect of an assignment on the system performance and
hen use the NSGAA-II algorithm to find a set of non-dominated solu-
ions. 

In Section 8.7 , we show sample solutions where we used the same
uty-cycle length for all activities, and we compare them to solutions
here activity-specific duty-cycle lengths are used. 

.3. Combination 

In our previous works, we used both described methods indepen-
ently. In this work, we combine them, by first selecting which sensor
ubset to use for each activity and then running the duty-cycle optimiza-
ion using this assignment. This requires two choices (one in each step)
egarding which solution from the Pareto front to use, but otherwise
eamlessly combines the two. 

One can combine the selected solution with the optimization of
he sampling frequency – which is the third, smaller contributor to
he energy consumption of the device. Testing different frequencies
 Section 8.1 ) revealed that using the frequency of 50 Hz loses basically
o classification accuracy compared to the frequency of 100 Hz. We
hus settled to using it, and made no additional effort at optimizing the
requency, but a reader can find more sophisticated methods in related
ork [30,61] . 

Finally, to reduce the power consumption required for classifying a
ingle instance, we compared the processing requirements of different
lassifiers and their ensembles. Different trade-offs between the classifi-
ation accuracy and processing power required are shown in Section 8.7 .
t should be noted, however, that since classifications happen only once
ach minute, the data processing is not the bottleneck when considering
he energy consumption. 
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Fig. 9. Accuracy on the itest set for different frequencies and for different win- 
dow sizes, using the RF model. 

Fig. 10. Accuracy on the itest set for different frequencies and for different win- 
dow sizes, using the Multi-ResNet. 
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Table 2 

Difference in accuracy on the itest data using the per-sample labels 
and the majority labels, using different frequencies and window 

sizes. 

Window length [s] 60 40 20 10 5 

Difference [%] at 100 Hz 0.57 0.14 0.04 0.01 0.02 

Difference [%] at 1 Hz 0.55 0.17 0.04 0.01 0.01 

Table 3 

Accuracy [%] on the itest data achieved using data from only one 
sensor. 

Sensor Acc Gyro Pressure Mag Ori All 

RF 86.5 79.5 52.1 72.1 71.3 82.6 

Multi-ResNet 81.4 67.2 49.0 67.7 65.9 85.2 

t  

h  

t  

e  

v  

t
 

p  

t  

b  

t
 

a  

c  

2  

c  

p  

s
 

b  

c  

a  

a  

R  

d  

f
 

s  

t  

F  

T  

c  

t  

r

8

 

o  

d
 

u  

–  

f  

t  

f  

i  

t  

s

. Results 

For the experimental evaluation, we mostly used classification accu-
acy as the measure of classification quality, but for the final results we
lso list the precision, recall, and F1 score: 

𝑐 𝑐 𝑢𝑟𝑎𝑐 𝑦 = 

𝑇 𝑟𝑢𝑒 𝑃 𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑇 𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 

𝐴𝑙𝑙 𝑇 𝑒𝑠𝑡 𝐼𝑛𝑠𝑡𝑎𝑛𝑐 𝑒𝑠 
(11)

 1 𝑠𝑐𝑜𝑟𝑒 = 2 × 𝑃 𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙 
𝑃 𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙 

(12)

 𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 

𝑇 𝑟𝑢𝑒 𝑃 𝑜𝑠𝑖𝑡𝑖𝑣𝑒 

𝑇 𝑟𝑢𝑒 𝑃 𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹 𝑎𝑙𝑠𝑒 𝑃 𝑜𝑠𝑖𝑡𝑖𝑣𝑒 
(13)

𝑒𝑐𝑎𝑙𝑙 = 

𝑇 𝑟𝑢𝑒 𝑃 𝑜𝑠𝑖𝑡𝑖𝑣𝑒 

𝑇 𝑟𝑢𝑒 𝑃 𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹 𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 
(14)

When calculating the F1 score for multiple activities, the F1 score
s calculated for each activity separately and then averaged over all of
hem. 

.1. Frequency and window size 

We started by testing different sampling frequencies and window
izes. Results using two different models (trained on the itrain set and
ested on the itest set) are shown in Figs. 9 and in 10 . 

The results for the RF show almost no difference in performance
hen dropping from a sampling frequency of 100 Hz to a sampling fre-
uency of 20 Hz. At lower frequencies, the performance started to vis-
bly decrease, but surprisingly, even at a sampling frequency of 1 Hz,
55 
he accuracy only fell by roughly 5 percentage points compared to the
ighest value. Given the results in similar domains, it is not surprising
hat 20 Hz is enough to recognize the human motion, however it is inter-
sting to note that it also seems enough to capture the different vehicle
ibrations. Additionally, we can see that larger window sizes increase
he accuracy regardless of the frequency. 

The results for the Multi-ResNet show that the accuracy reached its
eak at a sampling rate of 20 Hz and decreased at lower rates, just as in
he RF case. Somewhat curiously, the 40 second window was found the
est performing by a significant margin, while it was a close second in
he RF case. 

For the classical ML models, we selected a sampling rate of 50 Hz
nd a window size of 60 seconds, to match our submission to the SHL
ompetition. However, these tests show that any other frequency from
0 Hz to 100 Hz would be similarly suitable. For the Multi-ResNet, we
ontinued with the best performing parameter combination, i.e., a sam-
ling rate of 20 Hz and a window size of 40 seconds, since the accuracy
ignificantly decreases for other combinations. 

Next, we investigated the difference between having per-sample la-
els and majority labels. To do so, we calculated the accuracy for both
ases for each window size. These tests were done using two frequencies
t the opposite end of the spectrum. The results are presented in Table 2 ,
nd show that the difference is (sometimes significantly) less than 1%.
esults were also unaffected by the selected frequency. Due to the small
ifference and the reasons explained in Section 4.1 , the results reported
rom here on will continue using the majority labels. 

Lastly, we tested the sensitivity to the choice of the itrain, itest, ivalid

et. To do so, we tested what happens if we switch them around, e.g.,
raining on the itest and testing on the itrain . All the experiments from
ig. 9 were repeated for all six possible switches of these three sets.
he standard deviation of the results was 1.6% – from which we can
onclude that the dataset is quite robust to the choice of the internal
rain, test, and validation sets. This can probably be attributed to its
elatively large size. 

.2. Feature importance and selection 

The next area for attention is the importance of the features based
n both the sensor stream they were derived from and their type (time-
omain, frequency-domain, rotated to world’s coordinate system etc.) 

We start by training the models on data from only one sensor stream,
sing both the RF and the Multi-ResNet as before. Results ( Table 3 ) show
somewhat unsurprisingly – that the accelerometer is the best suited

or the task, with the gyroscope and magnetometer data in second and
hird places. For the Multi-ResNet, no sensor stream by itself outper-
orms their combination – showing the importance of the sensor fusion
n this domain. In the RF case, the accelerometer seems to outperform
he sensor union, but this ceases to be the case after the feature selection
tep. 
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Table 4 

Accuracy [%] on the itest data for different feature subsets 
using RF. 

Features Mag Acc 

Rotated 76.6 61.6 

Un-rotated 76.6 84.3 

Un-rotated + Rotated 79.5 86.5 

Time 73.7 81.6 

Frequency 73.3 83.9 

Frequency + Time 79.5 86.5 

Table 5 

The number of features kept and the accuracy of RF after 
each step of feature selection on both itest and ivalid set. 

Features Accuracy [%] 

ivalid itest 

All features 1,696 86.9 82.6 

Correlation removed 762 87.6 84.8 

Wrapper 203 89.5 86.9 

Wrapper strict 65 89.8 87.5 

Table 6 

The number of features selected from each sensor’s data 
stream for the “Wrapper strict ” feature subset. 

Sensor Acc Gyro Pressure Mag Ori 

#Selected 30 15 1 7 11 
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Table 7 

Accuracy achieved using different classical ML models and 
end-to-end DL models (including our end-to-end Multi- 
ResNet model) on the itest data. Standard deviation was cal- 
culated across ten repetitions of the experiment. 

itest Accuracy [%] 

Default Tuned Std 

SVM 81.1 84.1 0.8 

DT 72.3 75.4 1.3 

NB 76.7 76.7 0 

KNN 79.3 79.3 0.2 

MLP 82.0 86.7 0.4 

RF 87.5 87.7 0.1 

Bagging 83.4 87.1 0.4 

GradBoost 88.6 89.4 0.3 

AdaBoost 46.1 89.1 0.4 

XGBoost 88.4 89 0.3 

LabelSwitch 82.1 86.8 0.1 

CNN-4 60.3 64.5 0.3 

CNN-8 58.9 63.1 0.3 

CNN-16 58.1 60.2 0.3 

LSTM-2 60.1 62.3 0.2 

CNN-4-LSTM-2 74.1 76.4 0.4 

DNN-Spectrogram 80.1 81.2 0.4 

Multi-ResNet-2 80.6 85.4 0.3 

Multi-ResNet-4 84.8 89.2 0.2 

Multi-ResNet-6 85.2 89.4 0.2 

Fig. 11. Learning curves for the end-to-end DL models. The training accuracy 
( itrain data) is presented with dashed lines and the accuracy on the ivalid data 
is presented with solid lines. 
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In the next step, we more thoroughly investigate the impact of dif-
erent feature types, by choosing different subsets of acceleration and
agnetic field features. The subsets were made by either splitting the

eatures based on whether they are un-rotated ( Section 4.2 ), or based
n whether they are computed in the time or frequency domain. The
esults are shown in Table 4 . The most significant observation, is that
o feature subset outperformed the whole set, confirming the useful-
ess of each feature type. It is worth pointing out that the features in
he normalized coordinate system – which are not normally used in AR
consistently improved the accuracy by 2% (while not being good on

heir own, as there were simply fewer of them). Another interesting ob-
ervation is that the frequency-domain accelerometer features outper-
ormed the time-domain accelerometer features, even though the latter
re more common in AR. 

Finally, we present the effect of the feature selection method de-
cribed in Section 4.4 . The correlation threshold was set to 0.8. We
ested two different improvement thresholds for the Wrapper step, re-
ulting in “Wrapper ” (improvement threshold set to 0.2%) and “Wrap-
er strict ” (improvement threshold set to 0.05%). The results are listed
n Table 5 . 

For the subsequent experiments we continued with the feature subset
Wrapper strict ”. Table 6 presents more information about this feature
ubset. From the results, it can be seen that most of the selected features
re calculated from the acceleration data; followed by angular velocity
nd orientation data; next is the magnetometer data; and finally, only
ne feature is calculated from the pressure data. 

.3. Base models 

After choosing the “Wrapper strict ” feature set, we proceeded to test
ifferent ML algorithms. The results are presented in Table 7 . For the
lassical ML models, the column “Default ” presents the models’ accu-
acy with the default scikit-learn parameters, and the column “Tuned ”
resents the models’ accuracy after the 2-fold randomized parameter
earch. This search was repeated 10 times using different folds, av-
raging the results. For the end-to-end DL models, the column “De-
ault ” presents the models’ performance with all sensors as input, and
56 
he column “Tuned ” presents the models’ performance with the top
hree modalities as input (accelerometer, gyroscope and magnetome-
er). Multi-ResNet-2 is our DL method with 2 residual blocks per chan-
el, Multi-ResNet-4 is the same method with 4 residual blocks per chan-
el and so on. From the results, it can be seen that most of the classi-
al ensemble models (i.e., RF, Bagging, Gradient Boosting, XGBoosting)
erformed better compared to the classical single models (i.e., SVM, DT,
NN and MLP). The highest accuracy of 89.4% is achieved by the Gra-
ient Boosting (GradBoost) algorithm. The accuracy of the baseline DL
ethods is below 77%, which indicates that simple DL methods perform

imilar to the simple classical ML methods (e.g., DT and NB). In contrast,
he accuracy of our DL method (Multi-ResNet) on the same itest set is
9.4%, which is basically the same as the best performing classical ML
ethod. 

In Fig. 11 , we present the learning curves (accuracy with respect to
he number of training epoch) for the end-to-end DL models. It can be
een that all of the models except the LSTM achieved training accuracy
lose to 100%. This indicates that the models converged with respect
o the learning phase. However, for all of the baseline models the accu-
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Fig. 12. Learning curves for the Multi-ResNet model with a varying number of 
residual blocks (from 1 to 6). The training accuracy ( itrain data) is presented 
with dashed lines and the accuracy on the ivalid data is presented with solid 
lines. 

Table 8 

Accuracy achieved using different meta- 
models on the itest set. Standard deviation 
was calculated across the ten different data 
splits. 

itest Accuracy [%] 

Mean Std 

meta-SVM 92.6 0.7 

meta-DT 88.0 0.9 

meta-NB 91.0 0 

meta-KNN 92.1 0.3 

meta-RF 93.0 0.1 

meta-Bagging 93.0 0.4 

meta-GradBoost 93.3 0.3 

meta-AdaBoost 93 0.2 

meta-XGBoost 93.4 0.3 

r  

a  

n  

a  

p
 

w  

c  

a  

f  

M

8

 

u  

u  

p  

e  

m  

m  

–
 

b  

e  

T  

t  

a  

Table 9 

Accuracy achieved using either (or both) clas- 
sical ML or DL classifiers as the base of the 
ensemble on the itest set. Either all models of 
a type were used, or only the best one. Stan- 
dard deviation was calculated across the ten 
different data splits. 

Models used itest Accuracy [%] 

Mean Std 

All ML 91.3 0.3 

All DL 89.8 0.3 

All ML + All DL 93.4 0.3 

Best ML + Best DL 93.8 0.2 

Fig. 13. Accuracy [%] for Markov smoothing applied with different delay in- 
tervals on the itest data. 

Table 10 

Different methods for smoothing the data. The test setting with no delay was 
used for comparison. 

No smoothing HMM RNN LSTM Bi LSTM GRU 

93.4% 95.3% 93.7% 94.2% 93.5% 94.4% 
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acy on the ivalid data is close to 60%, except for the CNN-LSTM, which
chieved accuracy of 75%. This indicates that simple architectures can-
ot achieve high accuracy. In contrast, our Multi-Resnet outperformed
ll of the baseline DL models with a margin of at least 10 percentage
oints. 

Finally, in Fig. 12 we present learning curves for the Multi-ResNet
ith a varying number of residual blocks (from one to six blocks per

hannel). From the figure it can be seen that the accuracy increases
s the number of residual blocks increases. This trend is present up to
our residual block per channel. The Multi-ResNet-4, Multi-ResNet-5 and
ulti-ResNet-6 perform similarly. 

.4. Ensemble of models 

All the resulting models from the previous experiment ( Table 7 ) were
sed as base models in an ensemble. Different meta-models were created
sing different ML algorithms and were tuned using a 2-fold randomized
arameter search. This search was again repeated 10 times using differ-
nt folds. From the results presented in Table 8 , it can be seen that most
eta-models (with a few exceptions) have similar accuracy, with the
eta-model built with the XGB algorithm having the highest accuracy
93.4%. 

With the meta-XGB being the best meta-model, we analyzed which
ase models contribute to its performance. In particular, we were inter-
sted to find if both ML and DL models were required for the best results.
o do so, we tried using only ML models, only DL models (in this case
he default and tuned version of the Multi-ResNet), their combination,
nd only the best model from each category. The results are shown in
57 
able 9 , and show that having more than one ML model barely improves
he performance; however, by combining the ML and DL models (which
re substantially different), the accuracy increases significantly. 

.5. Markov smoothing 

The last step was applying the HMM smoothing. Fig. 13 presents the
ccuracy with Markov smoothing applied using different delay intervals.
he figure shows that even when working with no delay, using only
ast classifications to “smooth ” the current one, the accuracy increased
rom 93.1% to 95.1%. Small delays slowly increased the accuracy up
o its final value of 97.2%. By testing HMM smoothing with predictions
ade by different classifiers and ensembles, we noticed that the most

ubstantial accuracy gains happen with 5–10 minute delays. Since the
HL Challenge allowed for an offline classification, we used the longest
ossible delay (using all of the data) for the challenge submission, as
his was expected to yield the highest accuracy. 

As an alternative to the HMM smoothing, we tested RNN, LSTM,
idirectional LSTM [62] and GRU [63] neural networks to smooth the
redictions. These models used past and current predictions as the input
nd output the “corrected ” current prediction. Results using these mod-
ls are shown in Table 10 . They all improved the prediction accuracy,
ut not to the extent of the HMM model. 
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Table 11 

Accuracy [%] achieved after different steps of the proposed methodology. Test 
were performed on both internal and final test sets. Unless stated otherwise, each 
following step uses parameters of the previous one (e.g. all steps after the feature 
selection step, use the selected features). WL - window length. “/ ” denotes that 
ML and DL use different parameters. 

itest SHL Test 

ML DL ML DL 

WL - 5 sec, RF and frequency features for ML 77.1 78.7 85.1 78.8 

WL - 60/40 sec 84.7 85.2 88.2 81.2 

Using all features 82.6 / 89.8 / 

Feature selection / Sensor stream selection 87.8 89.3 88.4 90.8 

Using best classifier 89.4 / 90.9 / 

Ensemble (Best ML + Best DL) 93.8 94.7 

Using HMM smoothing 97.2 96.0 

Fig. 14. Precision-recall curve for each of the activities and their average. The 
AP stands for the average precision, defined as 

∑
𝑛 ( 𝑅 𝑛 − 𝑅 𝑛 −1 ) 𝑃 𝑛 , where R n and 

P n are the recall and precision for the n -th decision threshold. 
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Fig. 15. Different trade-offs between the average number of active sensors and 
the classification error. Some sample solutions are marked with letters A, B and 
C. 
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Only the accelerometer is used in all cases. 
.6. Experiments on the SHL test set 

By the time of writing this paper, the SHL challenge organizers had
eleased the labels for the SHL Test set, thus enabling us to evaluate our
ethodology on it. Table 11 shows the different steps of our method-

logy on both the itest and the SHL Test set. For the SHL Test , set we
sed the same parameters as for the itest set, with no additional fitting
o it. This table can serve as a summary on how much each step im-
roves the performance. On the itest set, every step increased the per-
ormance as expected, with the biggest improvements being attributed
o the window size (7 percentage points), feature selection (5 percentage
oints), ensemble (4 percentage points) and the use of HMM smoothing
4 percentage points). In the case of the SHL Test set, the starting accu-
acy was much higher (probably due to different activity distribution),
nd the role of feature selection was diminished – in fact, using all the
eatures worked best. The sensor stream selection, ensemble and HMM
moothing provided similar benefits. The final results for both test sets
re roughly the same. 

Table 12 presents the confusion matrix and the precision, recall and
1 score for each class, achieved by this method on the itest data. From
he confusion matrix, it can be seen that the most problematic activities
re the Train and Subway , i.e., the only two activities that have an F1
core lower than 90%. This is not surprising, since the Train and Subway

re in fact very similar. This also explains why most classifiers worked
etter on the SHL Test set than on the itest set, as the former contained
roportionally far fewer of these two activities. An alternative display
f the model’s performance using Precision-Recall curves is presented in
ig. 14 . Such curves would be useful to modify the decision threshold
58 
f we would be particularly interested in correctly detecting a specific
ctivity. 

Table 13 presents the final results on the SHL Test and compares
hem to the results of other competitors. To be able to compare these
esults, we list the results using F1 score, as was used in the competi-
ion. The JSI-Deep and JSI-Classic are our methods which were ranked
n first and second places at the SHL challenge, and have served as the
asis for the development of the method presented in this paper, the
eta-XGB-HMM. The last three rows are the third, fourth and the fifth

anked methods at the SHL challenge. From the results, it can be seen
hat our methods achieved an F1 score that is at least 3.6 percentage
oints higher, compared to the best performing method from the re-
ated work [64] . The meta-XGB-HMM presented in this paper yielded
he highest F1 score of 94.9%, which is an increase of 6.1 percentage
oints compared to the best performing method from the related work.

.7. Energy efficiency 

To explore different trade-offs between energy efficiency and the
lassification error, we first calculated the Pareto front of the trade-offs
hat use different sensors for classifying different activities – as described
n Section 7.1 . The results are shown in Fig. 15 . The most interesting
olutions seem to lie in the area between one and two sensors used on
verage. On the same figure, three sample solutions are listed. Note that
y not using the DL in the ensemble, the maximum achievable accuracy
s 90%. 

• Solution A: Accuracy lost: 0.5%, average number of sensors used: 2.1/5

This solution uses the accelerometer regardless of the activity. It
uses the magnetometer in all vehicles and when standing still. In
addition, it uses the barometer when walking and on the subway
(perhaps to detect the pressure change that happens when the user
enters or leaves a subway station). Somewhat peculiarly, it uses the
orientation sensor when on the bus or train – potentially to use the
rotated magnetometer features that can recognize the orientation of
the magnetic field caused by the train. 

• Solution B: Accuracy lost: 2%, average number of sensors used: 1.4/5

The accelerometer is used in all cases. The magnetometer is used
when on the subway or train – the two vehicles that are hardest to
distinguish from one another. All other sensors are inactive (with the
exception of the gyroscope when running). 

• Solution C: Accuracy lost: 7%, average number of sensors used: 1/5
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Table 12 

Confusion matrix, precision, recall and F1 score on the itest data for the model with 
highest accuracy, the meta-XGB-HMM model. 

Still Walk Run Bike Car Bus Train Subway 

Still 921 7 0 3 3 11 12 5 

Walk 4 718 4 2 1 0 1 1 

Run 0 9 328 0 0 0 0 0 

Bike 3 0 0 508 0 0 0 0 

Car 3 0 1 0 1272 0 0 0 

Bus 10 8 1 1 0 876 4 0 

Train 30 2 0 0 7 20 514 74 

Subway 1 2 0 0 0 0 0 331 

Recall [%] 95.7 98.2 97.3 99.4 99.7 97.3 79.4 99.1 

Precision [%] 94.8 96.3 98.2 98.8 99.1 96.6 96.8 80.5 

F1 score [%] 95.2 97.2 97.8 99.1 99.4 97.0 87.3 88.9 

Table 13 

Evaluation on the SHL challenge test data. Comparison of F1 scores be- 
tween our work and the top ranked teams at the challenge. 

Name Algorithm F1 score 

(Our) meta-XGB-HMM ML + DL + HMM 94.9% 

(Our) JSI-Deep [26] ML + DL + HMM 93.9% 

(Our) JSI-Classic [27] ML (XGBoost) 92.4% 

(Rel. work) Tesaguri [64] DL (spectrogram CNN) 88.8% 

(Rel. work) S304 [25] DL (feature MLP) + HMM 87.5% 

(Rel. work) Conf. Matrix [24] ML (RF) 87.5% 

Fig. 16. Different trade-offs between the average duty-cycle length and the clas- 
sification error on the itest data. Dynamic solutions are compared to those with 
a fixed duty-cycle length. 
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Fig. 17. Time for the classification of a single instance (note the logarithmic 
scale) for different methods. The “all DL ”, “all ML ” and “best ML+DL ” represent 
the corresponding ensembles. 

Table 14 

A sample assignment of duty-cycle lengths to each activity. 

Activity Still Walk Run Bike Car Bus Train Subway 

Duty-cycle 2 1 0 1 4 3 2 3 
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A quick take-away from the presented solutions is that if aiming to be
nergy efficient, we should always use the accelerometer and potentially
se the magnetometer if we suspect the user is in a vehicle. 

In the next step we took “Solution B ” and applied the duty-cycle
ethodology on it ( Section 7.2 ). Both fixed and activity-specific duty-

ycle lengths were tried and plotted in Fig. 16 . Duty-cycle length 0
eans that the sensors are always active; duty cycle length 2 means

hat after a window of sensor readings (1 minute in our case), the sen-
ors turn off for the duration of two windows. We can see that the Pareto
ront is mostly linear in both cases, decreasing the accuracy for roughly
.6 percentage points (p.p.) for each additional increment of the aver-
ge duty-cycle length by 1. However, for the same average duty-cycle
ength, the activity-specific assignment achieves roughly 1.5 p.p. higher
ccuracy in all cases. 

In all the solutions, the same pattern appears: when in a vehicle,
ong duty-cycles are used, as these activities have infrequent transitions.

hen in one of the “hub ” activities – Still, Walk – a short cycle is used
59 
or the opposite reasons. When running, a short duty-cycle is used due
o this activity being short on average. An example solution with an
verage duty-cycle length of 2 is shown in Table 14 . 

Taking it all together, using the “Solution B ”, the average duty-cycle
ength of 2 ( Table 14 ) and the sampling frequency of 50 Hz, we lose
oughly 5% (going from 90% to 85%) of the classification accuracy in
xchange for using only 5% of all provided data. 

As the additional post-processing step, one can use the HMM smooth-
ng on the predictions generated by this solution. Doing so brings the
ccuracy to 89.9%, roughly 7 p.p. less than the best solution (97.2%)
hat uses the HMM smoothing. 

Another way to minimize energy consumption would be to consider
he energy spent on classifying the instances. This energy is largely pro-
ortional to the time spent on the task. We thus measured the time re-
uired for the classification of a single instance for different methods
the cost of the HMM is independent of the method and not included).
ll the measurements were performed on a desktop computer, but it is
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easonable to assume that the results on a smartphone would be roughly
roportional. The deep-learning methods were tested of the CPU (and
ot the GPU) as related work showed that the GPU does not greatly
ccelerate the classification time on a smartphone [65] . 

The results in Fig. 17 show an exponential relationship between the
lassification accuracy and the required processing time. The XGBoost
nd GradBoost algorithms seem to present the best trade-offs between
he performance and the energy consumption, losing roughly 4 p.p. of
ccuracy compared to the ensemble, which is three orders of magnitudes
lower. 

. Conclusion and discussion 

The SHL Dataset is a uniquely large and sensor-rich dataset collected
n a real-life setting. It provides an open platform for creating and testing
lgorithms for AR and similar tasks. By containing activities not common
n AR datasets, such as Train and Subway , it opens new challenges for
he AR community. The SHL Challenge was an effective way to jump-
tart the research on the dataset, yielding the first solutions to the basic
ocomotion AR problem. 

This paper offers a detailed description of our method, which won
he SHL challenge by most accurately predicting the activities on an un-
abelled dataset. It can thus be considered the reference AR method for
he SHL dataset, and a good starting point for similar AR problems. The
ighlights of the method are the complex pipeline that includes novel
re-processing steps (such as coordinate system rotation), the compre-
ensive feature set, the complex feature selection method and the novel
eural network architecture for deep learning. We also presented how
o optimize the energy consumption of our method by adapting sensor
ettings to each activity. They key contribution, however, might be the
xtensiveness of the performed experiments, which give insights on the
ffectiveness of different methods on the SHL dataset and in similar do-
ains. 

The following are our key experimental observations: ( Pre-

rocessing ) The ordering of the data before making the split for internal
valuation was a key step, as otherwise the results on the itest set would
e too good due to overfitting, and would not translate to the SHL Test

et. ( Window size ) The window size used for the segmentation influ-
nces both classical and DL methods similarly, i.e., a higher accuracy
s achieved with longer windows. ( Sampling frequency ) The features
xtracted for the classical ML are less sensitive to the data sampling fre-
uency compared to the automatic features learned by the Multi-ResNet.
n both classical ML and DL cases, a frequency of at least 20 Hz was re-
uired for most accurate predictions, but surprisingly good results were
chieved even with much lower frequencies (e.g. 1 Hz). ( Sensors ) Com-
aring sensors individually, the accelerometer data provided the highest
ccuracy for both the classical ML and DL methods. The accelerometer
nd magnetometer proved to be the best pair. However, all sensors had
o be fused together to achieve the best results. ( Feature subgroups )
or the classical ML, using features either in time or frequency domains
ielded roughly the same results. Using both feature groups improved
he accuracy. The accuracy was further increased by adding features
rom the accelerometer and magnetometer that were rotated into the
orld coordinate system. ( Feature selection ) The feature selection re-

ults are in line with the per-sensor results - i.e., more features were
ept from the sensors for which the sensor-specific models achieved
igher accuracy. The three-step feature selection method found a good
eature subset that did not overfit to the ivalid set. This increased the
ccuracy by roughly 5 p.p on the itest set. Surprisingly, on the SHL Test

et, using all the features worked better then any tested feature subset.
 Classification models ) As expected, ensemble models (e.g., boosting
nd RF) performed better than single models (e.g., KNN and DT). The
ulti-ResNet, using an end-to-end DL architecture, achieved an accu-

acy of 89.4%, on a par with the classical ML models – the best of which
GradBoost) also achieved an accuracy of 89.4%. Considering that DL
as enjoyed limited success in AR so far, it may be that the research
60 
ommunity is still developing appropriate architectures. The majority
f the models got significantly better after the hyper-parameter tun-
ng. ( Ensembles ) Building an ensemble that combined the ML and DL
odels significantly improved the accuracy (from 89.4% to 93.8%.).

 HMM ) The HMM smoothing also worked surprisingly well, improving
he accuracy by four percentage points (from 93.8% to 97.2%). Thus,
or the type of data where the activities are reasonably long-lasting (in
he SHL challenge all activities last more than 12 minutes on average -
able 1 ), we recommend the use of this post-processing step. ( Energy

fficiency ) By combining three different approaches for optimizing the
nergy-consumption, we found a solution that reduces the amount of
ata needed – and thus the expected energy to collect and process it –
y 95%, while losing only 5% of accuracy. 

Regarding the limitations of the presented work, the windowing and
requency experiments for the Multi-ResNet are biased towards the spe-
ific DL architecture. Different architectures might find other parame-
ers more suitable. Also, the final and best performing feature subset
 ”Wrapper strict ”) might be biased towards RF, since RF was used to
uild models for the wrapper feature-selection method. Finally, the SHL
hallenge data comes from a single smartphone, worn by the same user
n his trouser pocket for a period of four months. Thus, the presented
nalysis is person dependent and the models are person-specific. 

Parts of this methodology were successfully used in the past on other
atasets (the deep learning component [66,67] and the classical ma-
hine learning component [6,34] ), which can be an indicator of the
enerality of the proposed approach. Additionally, we used very similar
ethodology to win the 2019 version of the SHL competition [68] (this
aper was about the competition in 2018). However, in the future,
e plan to evaluate the models on additional subjects as the data be-

omes available, and on additional datasets for AR. Additionally, the
ulti-ResNet can be updated with more advanced end-to-end fusion ap-

roaches like two-stream network fusion [69] or multimodal subspace
lustering [70] . 
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