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Abstract.1  In this paper we propose a method for continuous 
stress monitoring using data provided by a commercial wrist device 
equipped with common physiological sensors and an 
accelerometer. The method consists of three machine-learning 
components: a laboratory stress-detector that detects short-term 
stress every 2 minutes; an activity recognizer that continuously 
recognizes user’s activity and thus provides context information; 
and a context-based stress detector that first aggregates the 
predictions of the laboratory detector, and then exploits the user’s 
context in order to provide the final decision in a 20 minute 
interval. The method was trained on 21 subjects in a laboratory 
setting and tested on 5 subjects in a real-life setting. The accuracy 
on 55 days of real-life data was 92%. The method is currently 
being implemented as a smartphone application, which will be 
demonstrated at the conference. 

1 Introduction and motivation 

Stress is a process triggered by a demanding physical and/or 

psychological event [12]. It is not necessarily a negative process, 

but continuous exposure can result in chronic stress, which has 

negative health consequences such as raised blood pressure, bad 

sleep, increased vulnerability to infections, decreased mental 

performance and slower body recovery [11]. It also has substantial 

economic consequences: the European Commission estimated the 

costs of work-related stress at €20 billion a year due to absence 

from work and decreased productivity [1]. Therefore, a stress-

detection system would be useful for self-management of mental 

(and consequently physical) health of workers [3], students and 

others in the stressful environment of today’s world. 

Thanks to the recent technological advances, some of the stress-

response components (e.g., increased heart rate) can be captured 

using an unobtrusive wrist device equipped with sensors, e.g., 

Empatica3 or Microsoft Band. Our method is also based on the data 

captured by such a device, on which we use advanced machine 

learning (ML) along with context information.  

The pioneers in the field of stress detection are Healey and 

Picard who showed in 2005 that stress can be detected using 

physiological sensors [5]. Since 2005, various studies were 

conducted to implement stress detection using a combination of 

signal processing and ML using data from physiological sensors 

and accelerometers [5][6][7][9][10]. The problem of stress 

detection was first analyzed in constrained environments such as a 

laboratory/office [10], car [5], and call center [6]. Some approaches 

in which the subjects were allowed to be active based on a 

predefined scenario came one step closer to the real world [9]. 

Most recently, Hovsepian et al. [7] proposed cStress, a method for 

continuous stress assessment in real-life using a chest belt. 
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Similarly, our method is tested in real life, however, we use a 

commercial wrist device instead of a chest belt. For future work 

Hovsepian et al. [7] suggested better handling of physical activity 

(which can reduce stress detection performance) and using context 

information in the process of stress detection – which is what we 

have done in our study.  

2 Method for stress detection in real life 

For the purpose of this study, two datasets were recorded: a 

laboratory dataset, which includes 21 subjects, and a real-life 

dataset, which includes 5 subjects. The Empatica2 wrist device was 

used to collect data for both datasets. It provides heart rate (HR), 

blood volume pulse (BVP), galvanic skin response (GSR), skin 

temperature (ST), time between heartbeats (IBI) and accelerometer 

data. To collect the laboratory data we used a standardized stress-

inducing experiment as proposed by Dedovic et al. [2]. The main 

stressor was solving a mental arithmetic task under time and 

evaluation pressure3. The real-life data was gathered on ordinary 

days, when the subjects were wearing the wrist device and were 

keeping track of their stressful events.  

Figure 1 presents the proposed method for stress detection in 

real-life. The method consists of three main ML components: a 

laboratory stress detector, an activity recognizer, and a context-

based stress detector which provides the final output. 

The laboratory stress detector is a ML classifier that 

distinguishes stressful vs. non-stressful events in 4-minute data 

windows with a 2-minute overlap.  For each data window, features 

for stress detection are computed. From each physiological signal 

(BVP, HR ST and GSR), statistical and regression features are 

computed: mean, standard deviation, quartiles, quartile deviation, 

slope and intercept. Additional features to quantify the GSR 

response are computed with an algorithm for peak detection [8]. 

For the IBI signal, we use features obtained through heart-rate-

variability analysis in the frequency and time domain. These 

features are fed into a classifier trained with the Random Forest 

ML algorithm, which was chosen experimentally.  

The activity recognition (AR) classifier is a ML classifier that 

uses the accelerometer data to recognize the user’s activity: sitting, 

walking, running, and cycling. It is based on our previous approach 

for AR [4]. The classifier outputs an activity label every 2 seconds. 

When aggregating these activities over the data window of 4 

minutes, each activity is changed into an activity level (e.g., lying = 

1, walking = 3, running = 5) and averaged over the window. The 

average activity level is passed as a feature to the context-based 

stress detector. 
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Figure 1.  Method for stress detection in real life.  
 

The context-based stress detector was developed to distinguish 

between genuine stress in real life and the many situations which 

induce a similar physiological arousal (e.g., exercise, eating, hot 

weather, etc.). As features, it uses the distribution of the last 10 

outputs of the laboratory stress detector, the previous output of the 

context-based detector, and context features: whether there was any 

high-level activity in the last 20 minutes, the hour of the day, the 

type of the day – workday/weekend, etc. It classifies every 20 

minutes as stressful or non-stressful. The context-based stress 

detector was trained with SVM, which was chosen experimentally. 

3 Experiments 

 The evaluation of our method was performed on the real-life data. 

Because labeling stress is quite subjective [6] and it is almost 

impossible to strictly define starts and ends of stressful situations, 

we used a technique that splits the stream of real-life data into 

discrete events. Each event had a minimum length of one hour. If 

there was a stressful situation in the event (labeled by the user), the 

event’s duration was extended to capture the stressful situation plus 

one hour before and after the situation. This allows a labeling lag 

of one hour. The 55 days of the real-life data was split into nearly 

900 events, each lasting at least an hour. 

Table 1 presents the confusion matrices for the event-based 

evaluation using leave-one-subject-out (LOSO) cross-validation. 

On the left are the classification results without context (based only 

on the predictions of the laboratory stress detector) and on the right 

are the results for the context-based stress detector. The accuracy 

achieved by the context-based stress detector (for distinguishing 

stressful vs. non-stressful events) 

is 92%, which is for 16 

percentage points better than the 

no-context classifier. 

Additionally, Figure 1. depicts the 

output of the context-based stress 

detector for the real-life dataset. 

On the x-axis is the day, on the y-

axis is the hour of the day, the 

black stripes label which subject 

the data belongs to, and the 

colored squares correspond to the 

false positive (FP), false negative (FN), true positive (TP) and true 

negative events (TN). From the figure it can be seen that subject 1 

(S1) has many FN events, and subject 2 (S3) has more FP events 

compared to the rest of the subjects. 

 

4 Discussion and conclusion 

We developed a method that can continuously detect stress in real 

life. By introducing a context-based classifier we provided more 

information about real-life circumstances and the user, which 

improved the detection performance. 

While still leaving room for improvement, the results are 

encouraging for such a challenging problem. For now, the context-

based stress detector receives information from the laboratory 

detector and the activity recognizer. Additional context information 

can be provided from other components that recognize events 

which induce similar physiological arousal to a stress event (e.g., 

exercise, eating, hot weather etc.). Because stress is perceived 

differently, we plan to implement personalization to allow to the 

general model to adapt to new users. Figure 1 confirms the need for 

personalization where it shows that the distribution and the type of 

the classification errors (e.g., FP vs. FN) is subject-specific. 

We are currently implementing the method as a real-time 

smartphone application. It will be demonstrated at the conference, 

where the participants will wear the wristband during stressful 

events, e.g., while giving a presentation. We will also integrate our 

method into an existing application that provides relaxation and 

lifestyle advice upon detected stress. It is intended for older 

workers and will be used in the European project Fit4Work [3].  
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Table 1. Confusion matrices for 

event-based evaluation. Context 

vs. no-context. 

0 1 0 1

0 638 175 790 23

1 44 70 51 63

Recall 78% 61% 97% 55%

Prec. 94% 29% 94% 73%

F1 85% 39% 96% 63%

Acc.

With context

76% 92%

No Context

Figure 2. Context-based output with LOSO evaluation. 


