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ABSTRACT
Human physiological monitoring has become easily accessible by
integrating wearable devices into our lives, providing valuable real-
time data. Methods for Cognitive Workload (CW) estimation utilize
such physiological data to quantify CW during task execution.
These methods are crucial for various domains, including mobile
healthcare, forecasting human errors, and human-machine inter-
action. However, accurately estimating CW continues to pose a
challenge due to the absence of objective ground truth data, context
dependency, and the privacy sensitivity of the data. This study tack-
led the complex task of estimating CW based on privacy-sensitive
data (e.g., eye movement, pupil diameter, blink information, and
other physiological signals) using Federated Learning (FL) meth-
ods to improve user privacy. We compared the outcomes of the FL
models with the more conventional centralized approach on two
publicly-available datasets COLET and ADABase, which include
data from 75 participants overall. The results highlight the effi-
cacy of FL in collaboratively training a global (person-independent)
model. The FL models achieved performances on par with central-
ized state-of-the-art models while preserving data privacy. Recog-
nizing the importance of privacy in user sensing, FL presents a
promising approach that enables wearable sensing applications in
privacy-sensitive domains.

CCS CONCEPTS
•Human-centered computing→Ubiquitous andmobile com-
puting systems and tools; • Security andprivacy→Distributed
systems security; • Applied computing → Health care informa-
tion systems; • Computer systems organization → Client-server
architectures; • Information systems → Decision support sys-
tems.

KEYWORDS
Cognitive Workload Estimation, Federated Learning, Data Privacy,
Machine Learning.

1 INTRODUCTION
The widespread use of sensors embedded in wearable devices has
facilitated human physiological monitoring, enabling real-time
biofeedback. Wearable devices are extensively employed to en-
hance the performance of athletes, students, soldiers, and pilots [21].
Cognitive Workload (CW) aims to quantify the cognitive effort ex-
erted by individuals during task execution, directly referencing
the cognitive resources allocated by that task [17]. Accurate CW
estimation could enable valuable use cases of wearable devices, e.g.,
for preventing burnout, reducing medical errors during complex
diagnosis processes, and avoiding sub-optimal care outcome [5].
Future human-machine interfaces [29] could also be augmented by
accurate CW estimation. For example, automatic CW estimation
could enhance driving safety by identifying high CW situations
due to secondary tasks that may compromise a driver’s focus [28].

However, accurate estimation of CW remains an ongoing chal-
lenge. First, the main limitation is the lack of objective ground truth
data, as CW has a substantial subjective component, and it often
relies on self-report measures or subjective ratings [31]. To achieve
a more precise evaluation of CW, a multidimensional measure based
on a set of self-validated questions, such as the NASA-Task Load
Index (TLX) [13], can be employed.

Furthermore, CW is highly context-dependent, depending on
task characteristics and environmental factors. Thus, methods for
CW estimation must consider and account for these external in-
fluences. Common approaches for estimating CW involve phys-
iological signals such as breathing patterns, brain activity, eye
movement, skin temperature, electrodermal activity (EDA), Photo-
plethysmography signals (PPG), electrocardiography (ECG) signals,
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electromyography (EMG), Electroencephalography (EEG) signals,
and similar [11, 18, 28].

Privacy protection, however, remains a significant concern that
has received limited attention in prior research. The state-of-the-art
sensors currently employed for CW estimation, including cameras,
eye trackers, and biomedical sensors [18, 28]. The use of these
sensor data poses the risk of unintentional exposure of users’ phys-
iological data, potentially leading to privacy attacks that can reveal
users’ identity, emotional states, or health conditions. This infor-
mation could further be exploited for purposes unrelated to the
intended application, such as targeted advertising or profiling. Thus,
it is crucial to comply with data protection regulations (e.g., GDPR)
that relate to critical ethical aspects such as data collection, storage,
and sharing practices [20]. Privacy-awareness is necessary for prac-
tical deployment of CW estimation systems in various contexts,
including education, healthcare, and human-computer interaction.

Addressing these privacy challenges, one might consider train-
ing individual models on local user datasets, thereby avoiding data
transfer across users. However, this approach sacrifices the shared
information across individuals, mitigating user heterogeneity and
potentially compromising the model’s generalizability and perfor-
mance. A possible solution is to employ privacy-aware modeling
techniques, such as Federated Learning (FL). This approach ad-
dresses privacy concerns by allowing only non-sensitive modeling
parameters to be shared for training a global model. The strength
of FL lies in its ability to emulate the comprehensive insights of
a centralized global dataset as if all users’ data were combined
without compromising individual privacy. Despite the promise, FL
is a recent technique with many open challenges, rendering its
applicability for CW estimation questionable. Example challenges
include federated model selection, evaluation, and hyperparam-
eter optimization [15]. The domain of CW estimation magnifies
these challenges, adding to the mix of challenges: noisy data, lim-
ited data, and domain shifts in both labels and sensor data (due to
subjectivity).

Our study explores the application of FL to overcome data pri-
vacy concerns in CW estimation. This contribution was realized
by:

• The creation of preprocessing and feature-extraction pipelines
for CW estimation from privacy-sensitive data — such as
eye movement, pupil diameter, and blink information — to
enable a direct comparison with the state-of-the-art meth-
ods in the field.

• The development of both feature-based and end-to-end
machine learning models for CW estimation.

• Experimental comparisons between the FL models with
the more conventional centralized models on two publicly-
available datasets COLET and ADABase, which include
data from 75 participants overall.

To the best of our knowledge, this is the first study that explores
FL for the development of privacy-aware CW estimation pipelines.

2 RELATEDWORK
2.1 Cognitive Workload Estimation
CWevaluation is typically examined by inducing single or dual-task
workloads to manipulate the intensity of mental effort. During these

tasks, various physiological measurements, such as EMG, ECG, PPG,
EDA, skin temperature, and respiration rate, are recorded. It’s im-
portant to acknowledge that all of these data sources are vulnerable
to external sources of noise, such as physical movements, which
can distort the sensor information. Additionally, variations in indi-
viduals’ baseline physiological activity can introduce uncertainty,
making it challenging to differentiate CW-related changes.

Additionally, behavioral measurements derived from actions
captured by cameras provide further insights for the CW estimation.
However, changes in lighting conditions can impact the accuracy
of eye-tracking measurements, requiring continuous adjustments
to accommodate shifting environmental factors, which may affect
the precision of CW assessments [4].

To counteract the inherent subjectivity of CW assessments, the
actual mental state of individuals is often assessed using perfor-
mancemetrics on the tasks or through subjective questionnaires [28],
aiming to provide a more objective and precise evaluation.

Previous studies have delved into the evaluation of mental states
using EEG signals [2, 26], ECG signals [12, 16], and heart rate vari-
ability (HRV) [3], mainly employing machine learning techniques.
Notably, eye-tracking metrics, such as pupil diameter and blink
information, have been demonstrated to be closely associated with
CW [7]. Elevated CW levels result in prolonged fixation latencies
and saccade durations, increasing average peak saccadic veloc-
ity [18]. For a detailed overview of approaches for measuring CW,
we refer the readers to the recent survey presented by Kosch et
al. [17].

The related work has demonstrated that physiological signals
offer valuable insights into CW. However, the sensors’ susceptibility
to noise, external factors, limited datasets, absence of ground truth
data, intrinsic difficulty of the task, and high-subject-dependency
can make precise CW estimation a challenging task. To address
some of these challenges and achieve fine-grained CW estimation,
advanced preprocessing techniques are required, including normal-
ization methods and supervised or unsupervised domain adapta-
tion [14, 30]. However, these challenges become even more pro-
nounced in FL, where the entire dataset, and consequently, global
dataset statistics, cannot be collected centrally. In our pursuit to
advance the field, we are the first to explore CW estimation based
on FL while aiming to maintain comparable performance with
centralized approaches and safeguard data privacy. We propose a
comprehensive pipeline for locally preprocessing the client data,
ensuring compatibility with federated approaches.

2.2 Federated Learning
FL is a machine learning approach offering higher privacy levels
than centralized machine learning. In a typical FL environment,
each model is trained locally on user devices without transmitting
raw data [25] in a common (centralized) location. Specifically, in
horizontal FL, each user computes training gradients locally, and
only an encrypted version of these gradients is sent to the central
server for secure aggregation. Similarly, the aggregated results are
sent back to the user, where they can be decrypted to allow for
model updates. To prevent indirect leakage of personal informa-
tion, the most used privacy techniques in the FL framework are
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Secure Multi-party Computation, Differential Privacy, and Homo-
morphic Encryption [34]. To mitigate some of the FL challenges
(e.g., non-IID data), various adaptations of the traditional Federated
Averaging [25] algorithm have been introduced, which involve the
simple average aggregation of weights from different models. These
adaptations include FedProx [22], q-FedAvg [23], and Personalized-
FedAvg [8]. Horizontal FL finds application in diverse wearable
computing domains, such as human behavior classification based
on EEG signals [9] and human mobility modeling using location
data [6].

FL is also gaining attention in the field of Affective Computing,
which aims to detect an individual’s mental state. Affective Comput-
ing spans a wide spectrum, encompassing stress-level recognition,
CW estimation, and emotion recognition, among others. Liu et
al. [1] highlighted the advantages of FL in stress classification tasks
using physiological and motion data. Their approach showed im-
proved results compared to models trained solely on local datasets,
a scenario where data sharing is impossible due to privacy con-
straints. However, their study did not use a user-independent test
set for model validation. Using a user-independent test set is crucial
as it helps ensure the model’s generalization capability across dif-
ferent users, providing a more robust assessment of its real-world
applicability. Similarly, Yekta Said Can and Cem Ersoy [24] em-
ployed FL to analyze heart activity data captured by smart bands
for stress monitoring. Another notable study is Fed-ReMECS [27],
which introduced a real-time emotion classification system using
multimodal physiological data sources, such as EDA and RB (respi-
ratory belt).

Building on these studies, our work expands the analysis to the
field of CW estimation. We aim to show that FL can be an effec-
tive approach for creating high-performance models that respect
privacy while still benefiting from shared user data. We propose
a CW-specific preprocessing on client devices that only relies on
client dataset, and incorporates signal alignment, common resam-
pling and data scaling. In this way, we avoid traditional analysis
and preprocessing that need the collection of the entire dataset.
Our results demonstrated that our framework, although subject
to additional challenges compared to centralized CW estimation,
can maintain high-performance. Such an approach holds signifi-
cant promise in the healthcare sector, where wearable technology
provides a wealth of sensitive information that can be leveraged to
enhance decision-making, intervention, and prevention processes.
To the best of our knowledge, this is the first study to apply FL
methods in developing a privacy-aware model for CW estimation,
with experiments spanning two distinct datasets.

3 DATASETS
This section describes the two datasets for CW estimation that we
utilized in our study, COLET [18] and ADABase [28].

3.1 COLET Dataset
The COLET dataset contains eye-tracking data, including eye move-
ment, pupil diameter, and blink metrics, collected from 47 test sub-
jects participating in four distinct activities (A1/A2/A3/A4). The
dataset is publicly available online [18, 19]. Data was recorded using
the "Pupil Core" eye-tracker from Pupil Labs. The four activities

were intended to evoke different levels of CW. Precisely, CW is
elicited by two tasks: main task where the participants need to
point out an object in an image divided in nine squares, and a sec-
ondary task in which the participants counted aloud backwards
from 1000 deducting 4. Whereas, the four activities are obtained
from a two-by-two factorial design with the factors time constraint
and tasking. Thus, A1 is no time constraint and single task, A2 –
time constraint and single task, A3 – no time constraint and multi-
tasking, and A4 – time constraint and multi-tasking. The effect of
the CW on one participant (ID32) can be observed on the plot (Fig-
ure 1) which depicts the pupil diameter for each activity, where the
𝑥-axis is the time, and the 𝑦-axis is the pupil diameter. In the boxes
the mean value is annotated, and it can be verified that indeed the
pupil diameter increases proportional to the CW. Upon complet-
ing each activity, participants were asked to complete a simplified
version of the NASA Task-Load Index questionnaire, NASA-RTLX.
This questionnaire is a widely used assessment tool for measur-
ing the subjective workload experienced during task performance.
Figure 2 displays a boxplot depicting the participants’ responses
to the questionnaire. The plot shows an increase in perceived CW
across the four activities. However, there is considerable variability
among the subjects. Our study focused on the classification task
of separating two levels of CW, high (activity A1 and A2) and low
(activity A3 and A4).

3.2 ADABase Dataset
The ADABase dataset utilized multimodal sensor data to estimate
CW [28]. Its primary objective is to assess how CW varies across
different driving challenges. The dataset includes physiological met-
rics such as ECG, EDA, EMG, PPG, respiration, skin temperature,
and eye tracker data recorded during tasks. Behavioral measure-
ments, depicted by action units from facial videos, and performance
metrics like reaction times are also incorporated. After each task,
the participants provided subjective feedback using NASA-TLX and
NASA-RTLX questionnaires. Originally involving 51 participants,
but due to privacy considerations, data from only 30 subjects is pub-
licly available. Prospective researchers can access the dataset upon
signing an EULA document. CW in the study is induced in two
distinct ways: via the 𝑘-drive test conducted in a semi-autonomous
driving simulation experiment and the 𝑛-back test. Participants
observed an autonomously driving vehicle under varying levels of
CW.

For the 𝑛-back task, the participants were presented sequentially
with stimuli, such as letters, and asked to compare the current
stimulus to one presented 𝑛 items back in the sequence. The 𝑛-back
test consists of six variations: single 𝑛-back and dual 𝑛-back, where
𝑛 ∈ {1, 2, 3}. During the test, positive and negative hits, as well
as reaction times for positive hits (from stimuli start until button
press), are recorded. The primary task is visual, showing a blue
square on the screen. The secondary task is auditory, involving
prerecorded German consonants. Positive and negative hits are
recorded, along with reaction times for positive hits (from stimuli
start until button press).

The 𝑘-drive test, a novel introduction from the study, mirrors
the 𝑛-back test. The primary task involves participants detecting
three car actions. The secondary task requires participants to add
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Figure 1: Pupil diameter in each activity. The boxes represent the average pupil diameter value.

a song to a playlist on a mobile app. The test uses 𝑘 to denote the
number of necessary user actions, where 𝑘 ∈ {1, 2, 3}. Specifically,
𝑘=1 indicates a car overtaking, 𝑘=2 signifies the car being overtaken,
and 𝑘=3 represents the car accelerating/decelerating. Levels 2 and
3 incorporate the secondary task.

Since ADABase has multiple different tests conducted, the CW
can be encoded using various settings, as suggested in the paper
[28]. Thus, we opted for encoding the CW in two classes where:

• low CW is 𝑛-back baseline {1, 2}, visual, audio-visual: 𝑛 ∈
{1} 𝑘-drive baseline {1, 2, 3};

• high CW is visual audio-visual: 𝑛 ∈ {2, 3} and dual 𝑘 ∈
{1, 2, 3}.

4 METHODS
This section presents the machine learning pipelines developed
in our study. We first describe the common preprocessing of the
data, then the development of centralized models replicating the
state-of-the-art studies to serve as baselines for developing the FL
models. The centralized and the FL approach use the same steps:
preprocessing (segmentation, filtering, outlier removal), feature
extraction, and model learning.

4.1 Preprocessing and Segmentation
To mitigate the inter-variability inherent in the sensor data, signals
from both datasets underwent a subject-wise normalization to posi-
tion them within a uniform, comparable range [32]. As highlighted
in Figure 3(b) relating to the COLET dataset, user-specific scaling
can be executed locally on the user’s device, making it particularly
compatible with the FL methodology. In Figure 4, (a) displays the
average absolute pupil diameter, while (b) presents the user-scaled
average pupil diameter across the four activities in the COLET
dataset. These figures showcase the impact of user-specific scaling
on pupil diameter, enhancing the discrimination between activities
with varying CWs. Similar outcomes were observed for signals
from the ADABase dataset. Each user’s data was scaled using the
StandardScaler from the scikit-learn library. Scaling offers a sig-
nificant additional advantage as it accounts for the varying scales
across the measured data types. Since these variables do not equally
contribute to model fitting, scaling the data aids in normalizing all
variables to comparable ranges of the values [18].

In the context of the COLET dataset, after the user-specific scal-
ing, the data underwent a series of preprocessing steps. As depicted
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in Figure 3(b), the initial phase involved aligning the pupil mea-
surements, originally captured at a frequency of 480 Hz. These
were downsampled to 240 Hz to ensure consistency with other
measurements. Notably, subsequent experimentation validated the
viability of further downsampling to 120 Hz without compromising
performance. Additionally, the encoding of participant blinking as
a binary signal enhances interpretability, with values of 1 indicat-
ing blink occurrence and 0 representing non-blink at respective
timestamps. The dataset is then segmented into windows of 5, 10,
20, and 30 seconds with 50% of overlap.

In the context of the ADABase dataset, after user-specific scal-
ing, the initial stage involves harmonizing signals with diverse
sampling frequencies, ranging from 100 Hz to 1000 Hz, through
uniform downsampling to 50 Hz. This process aligns the signals
across the dataset, preserving their performance integrity. Further-
more, participant blink events are encoded in a binary signal in the
same manner as the COLET dataset. Subsequently, the dataset is
transformed into a 3D array using sliding-window segmentation,
employing 20-second windows with 5-second overlap, so it can be
fed into the 1D Convolutional Neural Network. Notably, owing to
computational constraints, an end-to-end approach is exclusively
employed in experimentation, showcasing the dataset’s readiness
for further investigation.

Another important note to make is that from both datasets, data
for one participant was removed because of suspicious data quality,
but we still managed to preserve the performance of the models.

Table 1 presents summary information about the preprocessed
datasets, such as the downsampled frequency, number of clients,
recording length per client, class balance, and data volume. We can
observe that the number of samples (timestamps) of the data acqui-
sition of each participant in both datasets is comparable. However,
after delving deeper, the first discrepancy that comes out is the class
imbalance in the COLET dataset, whereas this has been taken care
of in the ADABase dataset, as it is also explained in the paper [28].

Figure 2: Boxplot of the NASA-TLX score. A higher NASA-
TLX score indicates a higher CW.

This finding is also reflected in the average number of class labels
per participant.

4.2 Feature Extraction
To replicate the state-of-the-art baselines reported in the original
COLET study [18], we performed dataset-specific feature extraction.
This enabled us to perform a detailed comparison of the proposed
FL approach with the feature-based, centralized, state-of-the-art
approaches. It is worth noting that feature-based models continue
to hold significance in wearable computing, achieving state-of-the-
art results in machine learning competitions [33]. This is probably
because wearable computing datasets have limited data volume
and intrinsic noise. This noise, primarily attributed to the relative
movement between the sensor and the wearer, frequently results
in faulty sensor readings. These challenges, compounded by the
intricacies introduced by FL, might hinder the effective application
of end-to-end learning for wearables.

As delineated in Figure 3(b), the preliminary stages of data pre-
processing for feature-based models align with those of the end-to-
end approach. Post this phase, we extracted statistical attributes
of the signals and domain-specific metrics from each data window.
The statistical features extracted include mean, standard deviation,
range, skewness, kurtosis, differential mean, second-order differen-
tial mean, lower and upper quartiles, inter-quartile range, and the
inverse coefficient of variation of the signals. For domain-specific
metrics, we integrated descriptors for saccades (velocity, peak ve-
locity, frequency, and duration), fixation metrics (frequency and
duration), pupil diameter, gaze positioning, and its differential. In
total, this approach yielded 71 distinctive features per data window.
After the feature extraction process, any statistical outliers were
automatically identified and eliminated. The features subsequently
served as inputs for both the centralized and FL feature-based mod-
els, which we detail in the following subsections.

4.3 Machine Learning Models
4.3.1 Feature-based models. To replicate the state-of-the-art re-
sults reported in the original COLET study [18], we initially used
feature-based ML models, such as Gaussian Naive Bayes (GNB) and
Random Forest (RF) on the extracted features. We also included
a Feed-Forward Neural Network (FFNN) suitable for training in
FL scenarios. We used simple FFNN architecture with two hidden
layers and one dropout layer. Each fully connected layer had 256
neurons, and the dropout rate was 25%. The output layer employs
a sigmoid activation function, enabling binary classification to dis-
cern high and low CW categories. The FFNN was optimized with
the Adam optimizer, fine-tuned with a learning rate of 0.0001, using
the binary cross-entropy loss function. Demonstrating efficient re-
source management, a strategic callback mechanism halts training
when performance plateaus for ten epochs.

4.3.2 End-to-end models. For the end-to-end approach regarding
both datasets, we designed a neural network architecture com-
bining a single 1D convolutional layer with the previous FFNN
(ConvFFNN). These additional layers are designed to intrinsically
extract features from the signals. Specifically, our architecture be-
gins with a 1D convolutional layer equipped with 64 filters, each
with a kernel size of 3. We used a ReLU activation function and

DOI: 10.1145/3626705.3627783
Published December 2023



Fenoglio, et al.

Figure 3: Federated Learning Pipeline for COLET. (a) Training Pipeline: Data from the smartglasses of each user is locally
processed and trained. Subsequently, model weights from individual users are aggregated on the server to produce a global
model, which is then used for on-device predictions. (b) User-Preprocessing Pipeline: Raw data undergoes several processing
steps, including scaling, pupil alignment, downsampling, windowing, feature extraction, and outlier removal to either yield
features or provide end-to-end windows.

Figure 4: The impact of user-specific scaling on the average pupil diameter across the four activities with increased CW in
COLET: (a) Original unscaled data, and (b) Data after user-specific scaling.

adopted a padding strategy to ensure that the output has the same
width as the original input. Following the convolutional layer, a
max-pooling layer with a pool size of 2 is applied, effectively halv-
ing the size of the feature maps. After the pooling operation, the

feature maps are flattened to form a 1D vector, which is then fed
into the FFNN. The optimization process was the same as with the
FFNN model, i.e., we optimized the ConvFFNN model using the
Adam optimizer, with a learning rate of 0.0001, using the binary
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Table 1: Summary statistics for the two datasets, COLET and ADABase

Statistic COLET ADABase

Downsampled frequency 120 Hz 50 Hz
Total Number of Participants 46 29

Number of raw signals 45 56
Number of timestamps per window 2400 1000

Average Participant Split: Train-Val-Test 34-6-6 21-4-4
Total Low CW Labels 35.10% 46.99%
Total High CW Labels 64.90% 53.01%

Total Number of 20 sec-Windows 1682 2926
Average Number of 20 sec-Windows/Participant 36.57 ± 11.74 100.90 ± 4.74

cross-entropy loss function. The same callback mechanism with
patience of ten epochs was also used.

4.4 Federated Machine Learning
Figure 3(a) shows themain concept of the FLwhere only theweights
of the neural network models are transmitted to the server and
are aggregated equally to a single global model. This FL concept
is applicable both for the feature-based model (FFNN), and for the
end-to-end learning model (ConvFFNN).

We employed the FL approach using the weighted Federated
Averaging algorithm. In this implementation, the updates from
each client are weighted relative to the number of samples in each
client’s data before the aggregation on the server. This ensures that
each client contributes equally during the federated training. We
chose this method because the clients in our datasets exhibit an
inhomogeneous distribution of data, leading to varying numbers
of samples per client.

Experiments were conducted with varying numbers of participat-
ing clients in each communication round to investigate the impact
of client participation on the FL process. Specifically, the experi-
ments were performed with 5, 10, 20, and 30 clients in each round
of the training. For each participation value, 100 rounds of com-
munication were executed. A binary cross-entropy loss function
was employed during model training. The clients used the Adam
optimizer, with learning rates of 0.001. The final model selected was
the one that exhibited the best accuracy on the validation set during
training. The same training settings were used for both datasets.

5 RESULTS
We performed experiments on two separate datasets, COLET and
ADABase. We used the COLET dataset to perform a detailed com-
parison of the FL models with machine learning models based on
the original COLET study [18]. These experiments involve several
feature-based models, several segmentation window sizes, and sev-
eral participation rates (for the FL scenario). The results of these
experiments are presented in the subsections 5.2 and 5.3. Once we
confirmed the suitability of the FL approach and the suitable hy-
perparameters on the COLET dataset, we performed an additional
comparison of the best-performing end-to-end FL model with the
corresponding centralized version. The results of these experiments
are presented in the subsection 5.4.

5.1 Experimental Setup
Our study focused on the classification task of separating two lev-
els of CW, high and low, for both COLET and ADABase datasets.
Given the size of our dataset and the hardware at our disposal,
we opted for 4-fold cross-validation rather than Leave-One-Out
validation to limit the computational time required. With 4-fold
cross-validation, each experiment was run four times, reducing the
computational burden compared to the 29 and 46 times required for
Leave-One-Out validation (where 29 and 46 represent the number
of users in ADABase and COLET, respectively). Each iteration of
our experiments lasted approximately 12 hours. This allowed us to
assess the models’ ability to generalize to completely unseen users
(person-independent models). Using 4-fold cross-validation, the
dataset was split into four exclusive groups of users, ensuring that
the data coming from one user was left out of the training only once.
For each fold, the clients not used for training were equally split
into validation and test sets. The model with the best validation
accuracy was tested on the unseen test clients.

The performance of the models was evaluated based on the
mean and standard deviation of accuracy, as well as the F1-score,
Precision, and Recall. The inclusion of these metrics is especially
valuable for the COLET dataset, where a higher class imbalance is
present. All experiments were performed on aworkstation featuring
a GPU–NVIDIA-RTX-A5000 (with 24 GB VRAM).

5.2 Centralized Machine Learning — COLET
Dataset

Table 2 presents the experimental results for the centralized models.
Our optimal combination of model and window size surpassed the
results presented in the original paper [18]. However, these results
might not be directly comparable because the original study does
not specify if the authors utilized window-based feature extraction
or if they calculated features across the entire duration of each
subject’s recordings for a given task. This variation might account
for the observed differences in results.

A positive correlation exists between window size and accuracy
across all models. This observation is consistent with the insights
from [32], suggesting that larger window sizes typically yield en-
hanced accuracy in CW detection tasks. One possible explanation
is that features derived from more extensive windows are poten-
tially less susceptible to noise compared to those from narrower
windows.
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Table 2: Experimental results comparison between [18]’s best
score (𝑘-NN COLET), our centralized models, and the FFNN
model. All models are person-independent.

Classifier Window
Size (s)

Accuracy 𝜎

𝑘-NN (COLET) — 90.00% —
RF 30 97.54% 1.16%
RF 20 95.38% 2.51%
RF 10 92.76% 2.23%

GNB 30 94.02% 1.91%
GNB 20 93.05% 1.65%
GNB 10 85.57% 3.88%

ConvFFNN 30 97.21% 1.50%
ConvFFNN 20 94.70% 2.04%
ConvFFNN 10 91.34% 2.82%

FFNN 30 94.81% 4.92%
FFNN 20 95.07% 1.34%
FFNN 10 91.46% 2.09%

In our experiments, the Random Forest (RF) model with a 30-
second window achieved the topmost performance, with an accu-
racy of 97.54%. Similar outcomes were observed for the ConvFFNN,
which achieved its best accuracy of 97.21%with a 30-secondwindow.
For the FFNN, the results between the 20-second and 30-second
windows did not show significant statistical variance. Interestingly,
the peak accuracy for the FFNN was attained with the 20-second
window, marked at 95.07%, in contrast to the 94.81% with the 30-
second window. However, as indicated in Table 2, the 30-second
window for the FFNN demonstrated a greater variance than the
20-second window.

In the following experiments, we focused only on the end-to-
end learning model (ConvFFNN) given that it does not require
feature-extraction steps, and yet it performs on par with the best-
performing feature-based models.

5.3 Federated Learning — COLET Dataset
In this section, we build upon the best combination of window size
and neural network model, identified during centralized learning
(subsection 5.2). Here, we explore the influence of the client partici-
pation rate (C) within the federated environment, examining the
end-to-end (ConvFFNN) approach. Table 3 shows that FL models
benefit from an increased participation rate in each round. Indeed,
the highest performances were achieved with 30 out of 30 partici-
pants per round with an accuracy of 95.40% ± 1.42% and an F1-score
of 94.68% ± 1.77%. Furthermore, since all participation rates were
tested with equal communication rounds, it can be inferred that
training with a higher participation rate resulted in faster conver-
gence. This observation is further solidified by Figure 5, which
depicts the average accuracy across training phases for all partici-
pation rates over communication rounds. A participation rate of 5
manifested a slightly oscillatory curve and lower accuracy, whereas
higher rates achieved more steady convergence.

5.4 Federated Learning — ADABase Dataset
In the context of ADABase, our primary comparison focused on the
end-to-end approach, examining both our centralized and federated
models. Based on our findings from the COLET dataset, where the
end-to-end approach demonstrated comparable performance to the
feature-based approach, we decided to exclusively experiment with
the end-to-end approach in the ADABase dataset. Our objective
was to compare these results with those presented in the original
paper [28]. It’s worth acknowledging that various features were
derived from the raw signals, including but not limited to mean
heart rate, standard deviation of successive NN intervals, and Root
Mean Square of Successive Differences (RMSSD) from ECG, RMS,
maximum amplitude and number of onsets per minute from EMG.
From the EMG data, they derived features such as RMS, maximum
amplitude, and the number of onsets per minute. Additionally, some
of the features derived from EDA included mean amplitude val-
ues of SCR peaks and changes in skin conductance level within a
window. The eye-tracking signals provided statistical features for
fixations, saccades, blinks, and pupil measurements. Furthermore,
they incorporated the number of active action units within a win-
dow. For a more comprehensive understanding of each of these
derived features, we encourage the reader to refer to the original
paper [28].

Notably, as displayed in Table 4, our centralized model (Con-
vFFNN) outperformed the results achieved with specific feature
extraction and an XGBoost classifier from the original study [28],
with a consistent improvement of 3.32% in F1-score. It’s worth men-
tioning that while their classifier was evaluated using nested 10-
fold cross-validation splitting the data subject-wise, our approach
utilized 4-fold cross-validation with person-independent splitting
across subjects. Although the evaluation methods are not directly
comparable, the improvement in performance is noteworthy. This
result confirms the advantages of using a convolution-basedmethod
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Figure 5: Plots of mean accuracy from different participation
rates for COLET.
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Table 3: Cross-validation results with our end-to-end federated neural network (COLET).

Classifier Part. rate Window (s) Accuracy (%) F1-score (%) Precision (%) Recall (%)

ConvFedNN 5 30 90.13 ± 3.91 87.62 ± 4.62 90.48 ± 3.36 89.00 ± 3.87
ConvFedNN 10 30 94.15 ± 3.00 93.18 ± 3.19 94.17 ± 3.17 94.36 ± 2.79
ConvFedNN 20 30 92.22 ± 1.20 90.53 ± 1.41 92.27 ± 1.55 91.63 ± 1.43
ConvFedNN 30 30 95.40 ± 1.42 94.68 ± 1.77 95.04 ± 1.40 95.54 ± 1.83

to extract features. As regards the end-to-end comparison, our Con-
vFFNN achieved an accuracy of 87.38%, while its federated counter-
part (ConvFedNN) registered an accuracy of 85.58%. The obtained
results for ADABase with higher standard deviation across the
tested folds compared to COLET may suggest the presence of more
diverse clients and measurements in the ADABase dataset.

This is also confirmed by Figure 6, which depicts the variation
in accuracy and loss during the training of the 5 ConvFedNNs.
Specifically, the plot illustrates the mean values along with the
standard deviation (± 𝜎) observed during the 4-fold cross-validation.

6 DISCUSSION
The findings from our study provide strong evidence that the FL
approach can rival the performance of centralized, privacy-intrusive
methods. In the end-to-end approach on the ADABase dataset, the
disparity in accuracy between the two methods is 1.80 percentage
points. On the COLET dataset, the difference was 1.81 percentage
points. Nevertheless, the slight decrease in performance seems
acceptable, given the increased privacy awareness of the FL models.

As also confirmed in Figure 7 , the confusion matrix for COLET
shows that the federated end-to-end model is perfectly balanced
between classes, demonstrating that the model is resilient to the
class imbalance present in the original dataset. Contrarily, a small
bias toward low CW is present in ADABase, indicating possibilities
for improvement.

One explanation for the performance decrease might be "out-
of-distribution clients", i.e., when training in a centralized fashion,
those outlier clients are shuffled in the overall training data and
considered noisewithout a big influence on themodels. On the other
hand, in the FL scenario, during local training with outlier clients,
the local model trains only on those outlier samples, resulting in a
bigger influence on the global model. In such scenarios, the simple
weighted Federated Averaging might not be the optimal choice for
themodels’ aggregation on the server. These findings accentuate the
need for deeper exploration into federated configurations. In this
context, an interesting topic for future research is exploring other
FL algorithms, such as FedProx [22] and Personalized-FedAvg [8],
in more realistic simulations that consider variations in the number
of samples or users’ importance. These algorithms seek to address
issues associated with the original FedAvg algorithm, including
fairness across devices and device heterogeneity.

Furthermore, CW estimation studies often face limitations in
labeled data and dataset size, where feature-based models typically
excel. In our experiments, the end-to-end models achieved high
evaluation scores – on par with the state-of-the-art feature-based
models. However, it should also be noted that for more fine-grained
CW estimation, the quantity of the labelled data may have a bigger

influence. Moreover, ADABase contains almost double the labeled
data compared to COLET and data from multiple sensors, such as
ECG, EDA, EMG, PPG, respiration rate and skin temperature in ad-
dition to the eye-tracker alone. Surprisingly, despite this substantial
difference in data volume, the evaluation scores of federated models
on ADABase are slightly lower, with an F1-score of 83.18% com-
pared to COLET’s 94.68%. This discrepancy suggests that factors
such as data quality and the specific type of CW task undertaken
by users may have a more pronounced effect on evaluation scores
than the data volume. It’s worth noting that this relationship might
change if the size of the labeled data significantly decreases, such
as in the case of only having a few hundred labeled samples.

Considering the importance of accurate CW estimation, future
research should also focus on evaluating federated approaches for
more detailed CW estimation. This could involve identifying more
CW states or providing continuous CW estimates instead of dis-
crete ones. However, it’s essential to recognize that achieving higher
discrimination among CW levels significantly increases the task’s
complexity. Therefore, to maintain high performance in these more
complex tasks, researchers can explore the use of complementary
techniques. Self-supervised or unsupervised methods, for instance,
could enhance model performance by leveraging unlabeled data
for training [14, 30]. For example, a recent work of Google, SimPer,
offers an intuitive and flexible approach for learning robust feature
representations from periodic signals, which could be instrumental
in enhancing the labeled dataset and optimizing FL model perfor-
mance [35]. Another avenue we intend to explore is the augmenta-
tion of convolutional layers within our network. While the primary
objective of our study focused on contrasting centralized and FL, the
parallel results obtained from both feature-based and end-to-end
methods prompt us to consider whether a deeper automatic feature
extraction could yield improved performance. A promising deep
learning architecture might be the Spectro-Temporal ResNet, which
learns both from the temporal and the spectral (frequency) repre-
sentations of the input signals, and is specialized for multimodal
sensor data [10].

Finally, we intend to integrate both datasets to establish a uni-
fied federated training system. This fusion is anticipated to foster a
global model with an enhanced capacity for generalization across
diverse user profiles, adeptly addressing data and sensor hetero-
geneity. As part of this effort, we envisage simulating cross-silo FL,
treating the two datasets as distinct institutions, and cross-client
scenarios by incorporating clients from varied datasets, each con-
tributing a different spectrum of sensor inputs.
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Table 4: Comparison of cross-validation results on ADABase between the best, centralized model (XGB) from [28] and our
models (ConvFFNN and federated ConvFedNN). The participation rate for FL training was 21 out of 21, with a window size of
20 seconds.

Classifier Accuracy (%) F1-score (%) Precision (%) Recall (%)

XGB (ADABase) — 82.00 ± 6.00 — —
ConvFFNN 87.38 ± 6.07 85.32 ± 8.15 85.64 ± 7.31 85.02 ± 7.20
ConvFedNN 85.58 ± 7.25 83.18 ± 8.71 84.32 ± 9.04 85.65 ± 7.21
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Figure 6: Learning curves during the federated training (ADABase).

Figure 7: Confusion matrices for the ConvFedNNs in COLET and ADABase.

7 CONCLUSION
This study tackled the complex task of estimating CW using FL
methods that prioritize user privacy. We compared the outcomes
of the FL models with the more conventional centralized approach.
Our experimental results highlight the efficacy of FL in collabora-
tively training a global model, yielding performances on par with
centralized state-of-the-art machine learning models. Recogniz-
ing the importance of user privacy in user sensing, FL presents a

promising approach that enables wearable sensing applications in
privacy-sensitive domains.

More specifically, on the COLET dataset, the person-independent,
end-to-end FLmodel achieved an accuracy of 95.40% for recognizing
two levels of CW (high vs. low). For comparison, the centralized ver-
sion of the same model achieved an accuracy of 97.21%. To further
test the proposed FL approach, we tested the end-to-end models on
a second dataset (ADABase), where a similar trend was observed.
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The end-to-end learning model obtained an accuracy of 87.38% and
85.58% using centralized and federated training, respectively. These
findings emphasize the potential of FL systems in safeguarding user
data without substantially compromising performance.
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