
A domain�independent architecture

for e�cient information retrieval on

the World Wide Web

Master Thesis �Diploma�

Faculty of Technology

University of Bielefeld

presented by

Marc Langheinrich�

Advisors

Prof� Dr� Ipke Wachsmuth�

Faculty of Technology� AG WBS� University of Bielefeld

Universitaetsstr� ��� ��	
� Bielefeld� Germany

Prof� Oren Etzioni�

Department of Computer Science� University of Washington

Box ������� Seattle� WA �
��� USA

�marclang�cs�washington�edu
�ipke�techfak�uni�bielefeld�de
�etzioni�cs�washington�edu

Ich versichere� da� ich die vorliegende Arbeit eigenst�andig angefertigt habe und
mich keiner anderen als der ausdr�ucklich angegebenen Hilfsmittel und Quellen be�
dient habe�

Bielefeld� den �	� August �		

�

University of Bielefeld

Abstract

A domain�independent architecture for e�cient information retrieval
on the World Wide Web

by Marc Langheinrich

Advisors

Professor Ipke Wachsmuth�
University of Bielefeld� Faculty of Technology

Professor Oren Etzioni�
University of Washington� Computer Science � Engineering

The World Wide Web�s rapid growth in recent years has provided a wealth of on�
line information� Including already more than hundred million documents� �nding
a particular page has become a daunting task of battling the Web�s information
overload��
Most popular methods of �nding information on the Web are known for being

either notoriously imprecise or often incomplete� simple searches can easily return
hundreds or thousands of irrelevant pages� while others might fail to include even a
single relevant one�
This thesis presents a novel architecture called Dynamic Reference Sifting��

which attempts to combine the comprehensiveness of Web indices� such as AltaVista
or HotBot� with the accuracy of Web directories� such as Yahoo�� Dynamic Reference
Sifting uses the output of general purpose search services� combined with additional�
orthogonal information sources� domain speci�c heuristics� and a �exible categoriza�
tion scheme to �lter out all but the single correct page�
Our experiments show that for certain types of pages� this approach can provide

nearly twice the accuracy and at least the same coverage as any existing service�
We have implemented a prototype called Ahoy� The Homepage Finder�� which
demonstrates the feasibility of our approach� Ahoy� is publicly accessible on the
Web� and has served more than ������� queries since it was �elded in May �		��
In order to demonstrate the domain independence and generality of our architec�

ture� we will also present two simple prototypes using Dynamic Reference Sifting in
the domains of academic papers and jokes� Both systems were developed and imple�
mented in less than ten days� but prove highly successful in our initial experiments�

�

Contents

� Introduction �
��� Motivation �
��� Thesis �
��� Methodology � Contributions �
��� Related Work �
��� Thesis Overview �

��� Acknowledgements �

� Softbots and the Information Food Chain �
��� Agents� Softbots and the Internet � 	

����� The Intelligent Agent paradigm � � � � � � � � � � � � � � � � � 	
����� Rodney� the Internet Softbot ��

��� Finding Information on the Web ��
����� Introduction ��
����� Web Directories ��
����� Web Indices ��
����� Manual Search ��
����� Web Agents �	

� Dynamic Reference Sifters ��
��� Introduction ��

����� Design Goals ��
����� DRS Set Characteristics ��

��� DRS Architecture �

����� Information sources ��
����� Filtering ��
����� Learning ��
����� Sample domain implementations � � � � � � � � � � � � � � � � � ��

��� Summary � Discussion ��

� Ahoy� The Homepage Finder ��
��� Finding personal homepages on the Web � � � � � � � � � � � � � � � � ��

����� Domain description ��
����� Current Methods ��

ii Contents

����� Using Dynamic Reference Sifters � � � � � � � � � � � � � � � � ��
��� The Ahoy� Web Service ��

����� History and Overview ��
����� Ahoy� Input� Searches and sessions � � � � � � � � � � � � � � � ��
����� Information Sources ��
����� Filtering� Heuristic Analysis � Classi�cation � � � � � � � � � � ��
����� Ahoy� Output� The Display Manager � � � � � � � � � � � � � � � �	
����� Learning ��
����
 Miscellaneous ��

��� Evaluating Ahoy ��
����� IR Performance Measures ��
����� Experimental Setup �
�
����� Results �
�
����� Discussion �
�
����� The e�ect of Hypothesis Statistics � � � � � � � � � � � � � � � �

� Beyond Ahoy� Using DRS in other domains 	�
��� Introduction ��
��� Academic Papers ��

����� Description of the Paper Domain � � � � � � � � � � � � � � � � ��
����� Paper Mate� A Case study ��
����� Experiments �

��� Jokes � 	�
����� Description of the Joke domain � � � � � � � � � � � � � � � � � 	�
����� Joker�� A Case study � 	�
����� Experiments � 	�

��� Summary � Conclusions � 	

 Conclusions and Future Work ��
��� Summary � Conclusions � 		
��� Future Work ���

����� Extending the functionality of existing DRS�Systems � � � � � ���
����� Extending the generic DRS framework � � � � � � � � � � � � � ���

Bibliography ���

A Glossary ���

B The Ahoy� System� Maintenance � Troubleshooting ���
B�� Implementation Details ���

B���� Main scripts� searching� guessing and following � � � � � � � � � ���
B���� Managing multiple server ���

B�� File List ���
B�� On�line documentation ���

Contents iii

B���� General Information ���
B���� Ahoy� Directory Guide ���
B���� The Ahoy� machine cluster ���
B���� How to make changes to the source code � � � � � � � � � � � � ���
B���� Web Statistics using htstats ���
B���� MetaCrawler Interface ���
B���
 List of Modules ���
B���� Ahoy� Server Troubleshooting � � � � � � � � � � � � � � � � � � ���
B���	 Howto� Count hypotheses ��

B����� Howto� Maintain the Institutional DB � � � � � � � � � � � � � ��

B����� Howto� Block speci�c sites from using Ahoy� � � � � � � � � � � ��	
B����� Howto� install an edit version of Ahoy� � � � � � � � � � � � � � ���
B����� Howto� install Ahoy� in a new directory � � � � � � � � � � � � � ���
B����� Howto� Add a new machine to the Ahoy� cluster � � � � � � � � ��

B����� Howto� Install required third�party programs for Ahoy� � � � � ��	
B����� Howto� �x Ahoy� bugs ���

B�� Embedded Source Code Documentation � � � � � � � � � � � � � � � � � ���

iv Contents

List of Figures

��� WWW Hosts Growth ��
��� Generic Web Index Architecture ��
��� The Information Food Chain ��
��� The Softbot Family Tree ��

��� DRS Control Flow �	
��� DRS Table ��
��� URL Extractor ��
��� URL Generator �

��� Ahoy� Search Form ��
��� Ahoy� Status Report ��
��� Ahoy� Results �

��� Ahoy� Module Overview ��
��� Ahoy� Cross Filtering �

��� Ahoy� Table ��
��
 Ahoy� Zones ��
��� Precision�Recall Graph ��
��	 Precision�Recall Graph in DRS�domain � � � � � � � � � � � � � � � � � �	
���� Performance Comparison �
�
���� Restricting Ahoy�� precision � Performance Comparison � � � � � � � �
�
���� Restricting Ahoy�� recall � Performance Comparison � � � � � � � � � �
�

��� Paper Mate Search Form ��
��� Paper Mate Results Screen ��
��� Paper Mate Base Reference Set Queries � � � � � � � � � � � � � � � � � ��
��� Paper Mate Control Flow ��
��� Paper Mate Experimental Results � 	�
��� Joker� Search Form � 	�
��
 Joker� Results Screen � 	�
��� Joker� Control Flow � 	�

B�� Embedded Documentation Sample ���

vi List of Figures

List of Tables

��� Characteristics of Information Agents � � � � � � � � � � � � � � � � � � ��
��� Top Level Hierarchies of the Yahoo� Web Directory � � � � � � � � � � ��
��� Web Indices Index Size �

��� Popular Web Search Methods ��

��� DRS Design Goals ��
��� DRS Set Characteristics ��
��� Implementation Samples �	
��� Implementation Samples �continued� � � � � � � � � � � � � � � � � � � ��

��� Initial Architectural Approaches �	
��� Ahoy� Modules by Category ��
��� Contents of Ahoy� Session Directory ��
��� Ahoy� Analyzer� Ownership Codes ��
��� Ahoy� Analyzer� Page Locations ��
��� Ahoy� Analyzer� Page types ��
��
 Ahoy� Zones ��
��� Ahoy� Placeholders ��
��	 Qualitative Performance Comparison � � � � � � � � � � � � � � � � � � �

���� Average Rank of Targets �
�
���� Cumulative Results �
�
���� Successful Hypothesis Application by Site � � � � � � � � � � � � � � �
�
���� Sample Searches �
	

��� Paper Mate Results per Article �	
��� Paper Mate Results of Follow�up Experiment � � � � � � � � � � � � � � 	�

viii List of Tables

� Introduction

��� Motivation� Searching the Information

Superhighway

The World Wide Web is growing at an exponential rate� Every day a few hundred
new servers are hooked up to the Internet� each providing a wealth of information�
ranging from merely a dozen to up to a hundred pages� Various search tools currently
�elded on the Web are indispensable for �nding information about general topics on
these servers�

Web directories like Yahoo� or Lycos� A�Z constitute a convenient way to search
the vast amount of topics covered by the Web�s online information� They provide
a great number of links categorized into topics and subtopics that allow the user to
focus her search on only a subset of the available pages �e�g�� search only pages de�
scribing Internet providers in Washington State�� thus being able to achieve both high
accuracy and coverage in certain well de�ned categories� However� Web�Directories
have a major drawback when it comes to coverage� in order to provide this method�
ological �typed� approach� all pages that can be found within these directories need
to be registered and �manually� categorized �rst� Consequently� they lack su�cient
coverage in all but a fair number of small areas� by only providing the subset of pages
that have been registered with their service� With more than ��� million pages cur�
rently on the Web�� even the largest directories like Yahoo� or Lycos� A�Z already
feature only a fraction of all available pages�� forcing the user to query automatically
generated indices such as AltaVista or HotBot�
These so called Web indices typically allow boolean keyword searches that work

regardless of the page or topic type the user is searching for� usually providing the
most up�to�date information available� However� for any given query� the user is
typically confronted with a huge number of references �hits� that the search engines
deem to be of relevance � a number that� especially for simple queries� can easily
reach hundreds� if not thousands� This imprecision can be described as information
overload� �BM���� where the sheer amount of references returned makes it hard to
�nd the right answer among them� Often the user would be forced to manually look

�as of July ����� the Lycos search service features over ��� million pages� However� industry
estimates predict the real number of available documents on the Web to be close to half a billion
pages� �where� where did I 	nd this
�

��Yan��� reports about one million pages for the Internet�s largest directory� Yahoo

� Introduction

at every reference until the desired answer can be found � an approach that fewer
and fewer users are willing to take�

But even such a laborious approach might not work� �SE	�� demonstrates that
automatically generated indices are not completely comprehensive for three reasons�
First� each index has its own strategy for selecting which pages to include and which to
ignore� Recent studies by �Mel	
� show great discrepancies between services indexing
pages at the same site� sometimes featuring less than half the number of indexed
documents� Second� some time passes before recently minted pages are pointed
to and subsequently indexed� ranging from bi�weekly �Hot	
� to monthly �Mon	
�
updates� Third� as the Web continues to grow� automatic indexers begin to reach
their resource limitations�

In summary� users looking for speci�c information face a daunting task� Either
they try using Web Directories� which feature reasonable accuracy at the expense of
coverage in most areas� or they must manually search through hundreds of relevant�
hits returned from a standard Web Index� However� even after looking through all
returned references of a Web Index and failing to �nd the desired information� they
can not be sure that the desired information is indeed not on the Web � it might
simply not be indexed by the particular service they chose� or they might have
overlooked the single relevant reference among hundreds of irrelevant ones�

��� Thesis

Some users have already accepted these limitations as inherent to the Web� When
searching for a speci�c page� they expect to manually browse through multiple answer
pages� or even issue multiple queries� both at the same site �for re�ning the query�
and at di�erent sites �for increased coverage��

In this work� we propose a novel information retrieval architecture that is designed
to address the above mentioned problems with standard search services� We call
this architecture Dynamic Reference Sifting �DRS�� It contains the following key
elements�

�� Reference source� A comprehensive source of candidate references �e�g�� a
Web index such as AltaVista��

�� Cross �lter� A component that �lters candidate references based on informa�
tion from a second� orthogonal information source �e�g�� a database of e�mail
addresses��

�� Heuristic�based Filter� A component that increases precision by analyzing
the candidates� textual content using domain�speci�c heuristics�

�� Buckets� A component that categorizes candidate references into ranked and
labeled buckets of matches and near misses�

��� Methodology � Contributions �

�� URL Generator� A component that synthesizes candidate URLs when steps
� through � fail to yield viable candidates�

�� URL Pattern Extractor� A mechanism for learning about the general pat�
terns found in URLs based on previous� successful searches� The patterns are
used by the URL Generator�

Using its reference source� a DRS�System �rst obtains a large number of possibly
relevant references to the user�s search request� Then� using a combination of cross
�lters and heuristic�based �lters� it sorts all available references into a large number
of ranked and labeled buckets� If one of the buckets that indicate a success has
been �lled� a URL Pattern Extractor extracts general descriptions of these relevant
references� In case only suboptimal buckets could be �lled� a URL Generator can
then be used to synthesize candidate URLs from these patterns in order to search
directly for the relevant pages�
This thesis attempts to support the hypothesis that for a certain class of pages�

such a DRS�System can provide both high accuracy and large coverage� o�ering
quality information from the Web� Members of this class share the following common
characteristics� as �rst described in �SLE	
��

� Availability� Many� but not necessarily all� member pages are accessible via
traditional search services�

� Focused attention� During a given search� the user is interested in a tightly
bound subset of pages� typically a single one�

� Strong cohesion� Each page is easily identi�able as belonging to the class�

� Large cardinality� The number of members prevents manual indexing�

� Widely dispersed� No centralized site� like a central repository� allows easy
access to the pages�

Current Web�Search methods �as described above� often provide no satisfying way
of searching for members of these sets� either the returned references are outdated�
incomprehensive� or imprecise� Speci�c tools based on the DRS architecture� taking
the characteristics of these sets into account� can overcome the limitations imposed
by current search methods and services and provide an e�ective retrieval mechanism
in these domains�

��� Methodology � Contributions

In order to support the above hypothesis� this thesis describes a fully implemented
system� called Ahoy� The Homepage Finder� that o�ers the aforementioned enhance�
ments for a speci�c domain� the Personal Homepage domain� As with other class of

� Introduction

pages� current search methods have shown to be inadequate for this retrieval task
�see section �����

To further demonstrate the general usefulness of our approach� we continue to
describe two simpler implementations in additional domains� Ahoy� Paper Mate in the
Academic Paper domain and Joker� in the domain of on�line jokes� Both domains
exhibit similar characteristics in terms of cardinality and distribution� which make it
hard to �nd member pages with standard search services�

Speci�cally� our work contributes to the �eld of Information Retrieval on the
World Wide Web by�

� Demonstrating the feasibility of providing high accuracy without sacri�cing cov�
erage� even in highly unstructured domains as the World Wide Web� The Ahoy�
system achieves remarkable performance when compared to standard search
services� showing more than twice the accuracy of its closest competitor� while
still o�ering the largest coverage�

� Developing a domain�independent architecture that works in a variety of do�
mains� enabling the rapid prototyping of simple� yet powerful systems� Using
the generic DRS architecture� we are able to quickly construct two simple pro�
totypes in di�erent domains� both o�ering high accuracy combined with high
coverage on the available test sets�

� Proposing a novel method of resource location on the Web� by learning about
the structure underlying a speci�c domain� In one experiment� Ahoy� is able to
�nd nine percent more references than its closest competitor by using its URL
extraction and generation methods�

� Examining e�ects of simple machine learning techniques on retrieval perfor�
mance� We compare three di�erent strategies for resource ordering in Ahoy��s
URL learning module� and show how keeping simple statistics can greatly im�
prove performance�

��� Related Work

With the advent of the World Wide Web as both a testbed for new technology and
the focus of consumer interest� a large number of research projects are dealing with�
or are closely related to� the task of information retrieval on the Web� The DRS
framework proposed here combines a number of current research areas � Searching�
Information Integration� Learning� and Web Agents � but o�ers an approach that
tries both to be feasible using current technology� and to be truly useful for the
everyday user� As �KSC	�� puts it� one of the most di�cult aspects of agent design�

��� Related Work 	

Searching

With the ever increasing size of their databases� standard Web indices like AltaVista
�DEC	�a�� HotBot �Hot	�� and Infoseek �Inf	�� have begun to o�er advanced query
syntax that can help increase accuracy� When looking for people� AltaVista�s NEAR�
ness operator� HotBot�s Person search� or Infoseek Ultra�s �Inf	
� automated name
recognition feature can be used to greatly improve performance of such indices� How�
ever� as our experimental results described in section ��� indicate� DRS�Systems can
exceed both the accuracy and coverage of these services in certain categories such as
personal homepages�

More e�cient techniques to create and distribute such indices have been explored
by the Harvest Project �BDH�	��� but improved accuracy or coverage have not yet
been demonstrated� The Harvest techniques have been used to build a demonstra�
tion search service� the WWW Home Pages Harvest Broker �BDH�	��� The broker
indexes only ������� homepages� few of which are personal homepages��

Directories like Yahoo� �Yah	�� or Lycos� A�Z �Lyc	�� can not keep up with grow�
ing number of homepages� as our experiments demonstrate� Similar performance is
exhibited by other manually�created indices that are specialized on listing homepages�
including People Pages�� �Hoy	�� Net Citizens�� �Tra	
� Housernet�� �Dei	�� and
many other sites �Dec	�b��

The WebFind system �ME	�� is comparable to our DRS implementation in the
academic paper domain� Ahoy� Paper Mate� However� although similar in its scope� it
uses a very di�erent� sequential approach� which proves much less e�cient than the
DRS application� FAQ�Finder �HBML	�� also works on a specialized domain very
much like a DRS�System� but uses a local repository of carefully selected documents
instead of the dynamic downloading in DRS�Systems�

In recent years clustering techniques have emerged as a way to cope with the
increasing number of relevant� references returned by standard search engines�
�CSO	��� �CKPT	��� and �ZEMK	
� have demonstrated systems using clustering
techniques for Web retrieval� These techniques are suited for browsing large col�
lections of documents� sometimes allowing the user to incrementally re�ne her query�
as she is able to more precisely express what she is looking for� AltaVista�s Live

Topics is an example for such a query re�nement cycle� �CSO	�� reports that user
get confused when presented with clustered maps of search results� suggesting that
user interface issues still prevent widespread use�

Information Integration � Extraction

�LRO	�� and �KLSS	�� describe systems that integrate information from multiple ref�
erence sources and use AI planning techniques to solve information gathering tasks�
However� their work focuses on �eld�oriented information sources �in contrast to full

�Other types of homepages include business homepages� project homepages or university home�
pages�

� Introduction

text sources like Web indices� which o�er less structure� and assumes a success�
ful information extraction prior to the integration� �ME	�� also examines aspects
of information integration and describes the �eld matching algorithm for matching
institutional name variations�

These systems� like the DRS�Systems presented in this work� require hand�coded
models of the information sources used� requiring substantial e�ort to add new or
update existing sources� The ShopBot system �DEW	
� and recent work on wrapper�
induction� �KWD	
� try learning to extract this information automatically� while the
ILA system� described in �PDEW	
�� learns to translate this information into its own
internal concepts�
The heuristics used in a DRS�System could in theory be used to classify pages�

while piggybacking a spider that indexes pages for a standard search service� How�
ever� a lot of the accuracy of a DRS�System depends on the availability of additional�
orthogonal information sources� Using only heuristics might not be as e�ective when
trying to identify the correct page type� A system developed by �CFM�	
� tries to
automatically classify pages into arbitrary categories by using hierarchical knowledge
base� but has yet to be demonstrated to operate on real Web data�
�BS	�� surveys a number of highly specialized name matching applications� most

of them commercial in nature� The Ahoy� prototype described here uses its own�
rather sophisticated� but moderately large� name matching scheme for locating a
person�s name on a reference� We can use this rather simple approach since Ahoy�
can use additional� orthogonal information to disambiguate between names it would
otherwise fail to distinguish�

Learning

Many systems learn user preferences� either forWeb Pages �PMB	��� �BS	��� �AFJM	���
or for Net News �Lan	��� �PS	��� These systems di�er from the DRS�Systems de�
scribed in our work� since DRS�Systems learn about theWeb rather than single users�
Systems that learn about users typically need a considerable number of training exam�
ples� before being able to exhibit any reasonable performance� By relying on domain
speci�c heuristics� DRS�System can perform well even without learned knowledge�
In e�ect� a user can immediately begin to e�ectively use the system� without having
su�er through series of bad performance while bootstrapping its knowledge base��

Web Agents

The DRS�System described here are closely related to the growing family of Web
agents called softbots��� �rst described by �EW	��� featuring systems such as Rod

ney� the Internet Softbot� theMetaCrawler �SE	��� a meta search service� ILA �PDEW	
��

�Usually user queries that provide explicit �i�e� user solicited� or implicit �i�e� observed� feedback�
�See section ����� for a description of learning mechanisms in DRS�Systems�
�See section ������

��	 Thesis Overview �

an agent for information understanding� and the ShopBot �DEW	
�� a comparison
shopping agent for the World Wide Web���
�WE	��� �Eic	��� and �Kos	�a� describe ethical issues of Web agents� which become

increasingly important as more and more softbots� cancelbots� spiders and worms
roam freely around the Web� The Ahoy� system honors the robot protocol �Kos	�b��
and uses statistics to reduce Web tra�c when applying learned patterns on the Web�	

��� Thesis Overview

Chapter Two will begin by introducing the concept of an intelligent agent� and
how one can be used to assist humans in performing everyday tasks� Our
research stems from two speci�c kinds of agents� information agents� and
softbots�� Softbots are capable of interacting with software tools on a human�s
behalf� while information agents help the user to locate information in on�line
databases� We will de�ne what an information agent is� and present the idea
of softbots in more detail� Then� we will bring the two concepts together by
describing current limitations of locating information on the Web� and showing
how softbots can be used to �nd information on it�

Chapter Three will describe our Dynamic Reference Sifting �DRS� architecture� and
how it can be used to create a softbot for e�cient information retrieval on the
World Wide Web� We will summarize the design goals and give a number
of example for possible domains for DRS�Systems� We will outline the key
elements of a DRS�System� information sources� �ltering and learning � and
conclude with a brief summary and discussion of our framework�

Chapter Four will contain a detailed account of a case study using DRS in a speci�c
domain� We will describe Ahoy� The Homepage Finder� a fully implemented and
publicly �elded DRS�System in the Personal Homepage domain� by starting
out with a brief description of personal homepages� followed by design criteria
and historic development� We will describe the system and its modules in an
overview� and then examine how each of the general architectural features �
information sources� �ltering and learning � are implemented in Ahoy�� We will
end the chapter by describing our experiments with Ahoy�� which examine its
accuracy and comprehensiveness compared to traditional Web search services�
In a separate experiment� we compare the e�ectiveness of di�erent methods to
support the domain�speci�c learning in Ahoy��

Chapter Five shows how the general DRS framework can be applied to other do�
mains� We describe two additional DRS prototypes� Ahoy� Paper Mate in the
Academic Paper and Joker� in the On�Line Jokes domain� For each prototype�

�See softbot family tree in 	gure ��� on page ��
�i�e�� to keep the number of false tries minimal�

� Introduction

we will brie�y describe its domain features� and how various parts of the ar�
chitecture take these into account� We will also report our initial �ndings on
some very brief� but suggestive� experiments conducted with both prototypes�

Chapter Six �nally contains our conclusions and directions for future work� followed
by an appendix containing a small glossary and some notes on the �elded
Ahoy� system�

��	 Acknowledgements

This work would not have been possible without the support of my advisors� Professor
Ipke Wachsmuth at the University of Bielefeld and Professor Oren Etzioni at the
University of Washington� Professor Wachsmuth made it possible for me to continue
my work on DRS by accepting it as my diploma thesis� while Professor Etzioni
generously provided o�ce space and equipment� as well as o�ering valuable insights
and suggestions during our weekly meetings�
Jonathan Shakes� who not only initiated the Ahoy� project but also christened it

perfectly� remained a constant source of help during the development of Ahoy� and
the other DRS�Systems� even after graduating this spring�
Britta Lenzmann gave valuable advice on how to cope with the frustrations of

writing a thesis and constantly reminded me not to sweat the small stu���
Erik Selberg provided the red carpet� back�door connection to the MetaCrawler

and spent countless hours discussing maintenance and performance aspects of the
system� installing hardware or troubleshooting the servers�
I thank Tessa Lau�
 Jonathan Shakes and Britta Lenzmann for lots of helpful

comments on earlier drafts of this thesis� especially the �rst chapters�

	Although Tessa constantly tried to convince me of the many virtues of Python� I chose to imple�
ment Ahoy� in Perl� thus giving way to the countless number of bugs still hidden deep inside its
source code�

� Softbots and the Information Food

Chain

In this chapter we examine what an intelligent agent is and describe the types of
agents that form the basis of our research on DRS� information agents and a speci�c
type of software agent� called Softbots��
We will look at how softbots can facilitate the use of complex and inaccessible

systems like UNIX and the Internet� and examine why it makes sense to use them
to create information carnivores� on the Internet�s most popular service� the World
Wide Web� In the course of this investigation� we will examine existing Web infor�
mation services like AltaVista and Yahoo�� which we call information herbivores��
and show how they are suited to cope with today�s wealth of on�line information�

��� Agents
 Softbots and the Internet

����� The Intelligent Agent paradigm

�Joh	
� o�ers a straightforward de�nition of an agent� which proves su�cient for
giving an idea about their nature and environments�

Arti�cial agents are computational systems that inhabit dynamic� unpre�
dictable environments� They interpret sensor data that re�ects events in
the environment and execute motor commands that produce e�ects in
the environment�

Agents can take many di�erent physical forms� depending in part on the nature of
their environments� part on the nature of their goal� For example� agents inhabiting
the physical world typically are robots� The types of agents we are interested in are
called information agents� Information agents help the user to locate information
within huge database systems� Visionaries such as Alan Kay have seen information
agents as the key to manage todays wealth of information available through on�
line databases and the World Wide Web� A retrieval �tool� won�t do because no one
wants to spend hours looking though hundreds of networks with trillions of potentially
useful items� This is a job for intelligent background processes that can successfully
clone their users� goals and carry them out�� �Kay	�� page ���� Information agents
allow the user to abstract these complex tasks involving hundreds if not thousands

� Softbots and the Information Food Chain

of operations� sparing him from the need of direct manipulation � the pervasive
interaction style for today�s computer where users click� drag� and drop icons��

Webster�s English language dictionary �web	�� de�nes an agent as a person or
business authorized to act on another�s behalf�� In that respect� these information
agents can be seen as arti�cial counterparts to travel agents� insurance agents� or
real�estate agents� They engage upon a client�s speci�c request and try to satisfy his
or her need by providing a small amount of information pulled from a much larger
pool of available references� The agents goal is to enable its client to focus on the
references relevant to his or her request while shielding the client from the noise of
unwanted information�

Table ��� enumerates a list of characteristics that have been proposed as desirable
agent qualities in the �eld of information agents� such as Autonomous� Communica�
tive�Mobile or Adaptive �EW	��� While no single agent currently has all these proper�
ties� many prototype agents embody a substantial subset of these� Our own work has
focused mainly on goal oriented� collaborative and �exible systems� while investigat�
ing aspects of temporal continuity through machine learning� Although there is little
agreement about the importance of the di�erent properties� most agree that these
characteristics are what di�erentiate agents from simple programs �EW	�� FG	
���

We will return to some of these properties during the course of de�ning our DRS
architecture� but for now it is su�cient to note the basic idea of an information agent
as a goal�oriented� collaborative and �exible computational system� which retrieves
on�line information in a dynamic� unpredictable environment��

����� Rodney� the Internet Softbot

The term softbot� is short for software robot�� and was �rst introduced by �ES	���
Softbots are Intelligent agents that use software tools and services on a person�s
behalf� in many cases relying on the same tools and utilities available to human
computer users � tools for sending mail� printing �les� querying databases� etc�

While information agents were characterized by their task � �nding on�line infor�
mation � softbots are described by their means� Instead of having the physical world
as their environment� as robots do� a softbot�s sensors and e�ectors use Software�
that was written for humans� Unix system commands like ls or cp� Internet software
like ftp or finger� or even Web forms at on�line stores�

Using a softbot� the user can be shielded from the plethora of Internet and Unix
services� allowing her to delegate tasks like monitoring �e�g�� disk utilization� user
activity� manipulating objects �e�g�� compiling source code� converting documents�
accessing remote databases� and constraint enforcement �e�g�� making sure that all
�les in a shared directory are group writable� to the automated assistant�

�Although this form of manipulation is appropriate when dealing with a small number of items�
such as a couple of harddisks and a printer� it makes operations on larger scales� such as querying
thousands of information sources dealing with millions of objects� cumbersome to handle�

�See �Pet��� for a discussion of intelligence in existing agent architectures�

��� Agents� Softbots and the Internet ��

�� Autonomous� an agent is able to take initiative and exercise a
non�trivial degree of control over its own actions�

�a� Goal�oriented� an agent accepts high�level requests indicat�
ing what a human wants and is responsible for deciding how
and where to satisfy the request�

�b� Collaborative� an agent does not blindly obey commands�
but has the ability to modify requests� ask clari�cation ques�
tions� or even refuse to satisfy certain requests�

�c� Flexible� the agent�s actions are not scripted� it is able to
dynamically choose which actions to invoke� and in what se�
quence� in response to the state of its external environment�

�d� Self�starting� unlike standard programs which are directly
invoked by the user� an agent can sense changes to its envi�
ronment and decide when to act�

�� Temporal continuity� an agent is a continuously running pro�
cess� not a one�shot� computation that maps a single input to a
single output� then terminates�

�� Communicative� the agent is able to engage in complex com�
munication with other agents� including people� in order to obtain
information or enlist their help in accomplishing its goals�

�� Adaptive� the agent automatically customizes itself to the pref�
erences of its user based on previous experience� The agent also
automatically adapts to changes in its environment�

�� Mobile� an agent is able to transport itself from one machine to
another and across di�erent system architectures and platforms�

�� Character� an agent has a well�de�ned� believable personality�
and emotional state�

Table ���� Characteristics of Information Agents� after 	EW
��� While no single agent
currently has all these properties� many prototype agents embody a substantial
subset of these� The work described here focuses mainly on goal oriented� collab�
orative and �exible systems� while investigating aspects of temporal continuity

through machine learning�

�� Softbots and the Information Food Chain

According to �EW	�� Wel	
� a softbot embodies the following ideas� loosely a
subset of the agent characteristics given in table ����

� Goal oriented� a request indicates what the human wants� The softbot is
responsible for deciding how and when to satisfy the request� then perform the
actions without supervision�

� Collaborative� a request is not a complete and correct speci�cation of the
human�s goal� but a clue or a hint that the softbot attempts to decipher and
then satisfy� Instead of issuing a passive error message in response to incorrect
or incomplete speci�cations� a softbot should collaborate with the user in order
to build a reasonable request�

� Balanced �Communicative�� the softbot has to balance the cost of �nding
information on its own� against the nuisance value of pestering the human with
questions

� Integrated� the softbot provides a single� expressive� and uniform interface to
a wide variety of services and utilities�

Much of the early work on softbots has been focused on the Internet Softbot��
also known as Rodney �ES	�� EW	��� Rodney uses a Unix shell and the Internet to
interact with a wide range of local and remote resources�
The core of Rodney�s functionality and added value to the user is its sophisti�

cated planning technology� Given a users request� the planner dynamically chooses
the appropriate software tools from a list of declarative representations� and chains
together a particular sequence of requests and actions that ful�ll this request� At
runtime� Rodney is able to �uidly backtrack from one tool to another in response to
transient system conditions �i�e� the �nger gateway is down� �EW	���
Although softbots can be used for a wide variety of tasks� the focus of this work

will be on how to use them to create the information agents described in section ������
The following will examine current means of accessing the World WideWeb� and show
how softbots can be used to improve current methods of locating information� We
will see that standard tools like Web indices and directories provide a powerful way
to access the Web� but that using them directly can be time consuming and often
frustrating� Delegating these tasks to a softbot allows the user to focus on the high
level goals only� without having to know the underlying mechanisms�

��� Finding Information on the Web� Indices

Directories and Browsing

This section summarizes the di�erent means for a user to �nd speci�c information
on the Web� It will contrast three popular methods� Web indices� Web directories�
and manual search� and try to evaluate them with respect to their accuracy and

��� Finding Information on the Web ��

comprehensiveness� It will then give an example of how a particular softbot� called
the MetaCrawler� can provide a powerful new service based on existing Web indices�

����� Introduction

When Tim Berners Lee �invented� the World Wide Web in �		�� the number of initial
Web servers was less than a dozen �Cai	��� For the �rst years� this number stayed
fairly constant� making Web navigation not much of an issue� Then� in �		�� the Web
began its relentless expansion into the real world� software for creatingWeb pages was
making its way into more institutions� more places had Internet�connected graphics
terminals so that Web sites could feature pictures as well as text� the Web browser
Mosaic started appearing everywhere� and individuals � rather than institutions �
began putting up content pages on the Web�

Figure ���� WWW Hosts Growth� as estimated by 	Lot
�� The chart lists the number
of hosts serving Web documents over a period from January �

� to January
�

� For the �rst years� the number of available WWW hosts stayed fairly
constant� making Web navigation not much of an issue� Today� the World
Wide Web already features more than �� million host machines� doubling every
year in size�

Today� the World Wide Web is a huge network of interconnected computers�
already featuring more than �� million host machines� doubling every year in size�
Figure ��� shows the exponential growth of Web hosts in recent years� as estimated by
�Lot	
�� According to visionaires such as Ambuj Goyal� Vice President of Systems
and Software at IBM Research� everything from our o�ce computer to the co�ee
machine at home� even individual light switches will eventually be �online��� ready

�See �Ven��� for a discussion of the future of information technology in the home�

�� Softbots and the Information Food Chain

to provide an unimaginable wealth of information �Goy	
�� Today� the Web already
o�ers individuals the ability to track shipments� get movie listings� or order almost
anything from books to videos to dishwashers� However� with more than ��� million
documents out there�� looking for speci�c information is no easy task�

Today� users usually follow three popular methods � or a combination of them
� to locate on�line information� Web Directories allow a focused search within a
certain topic�Web Indices allow keyword searches across a large subset of all available
Web documents� Manual Browsing accounts for searches where a lot of background
knowledge exists� allowing the user to narrow the search to a speci�c region of the
Web� But each method has its drawbacks� and we are going to look at each of them
in more detail in the following sections�

����� Web Directories

AWeb directory is basically like the Web�s Yellow Pages� Instead of o�ering telephone
numbers� a Web directory sortsWeb Links into a small number of top�level categories�
such as Entertainment�� Politics�� or Business�� o�ering the user a focused search
within the limits of a certain category�

One of the �rst and by far most popular of these services is the Yahoo� Internet
Directory�� founded in �		� by two Stanford graduate students� Starting out as
a humble little Web site called �Jerry�s Guide to the World Wide Web��� it soon
attracted thousands of hits per day� for it allowed users for the �rst time to access a
large number of Web resources sorted into an ever expanding number of prede�ned
categories� as shown in table ����

Today� Yahoo� features over ��� thousand categories� containing more than one
million di�erent entries from over ��� thousand unique Web sites �Yan	
���

The advantage of using a human sta� to manually index a large number of Web
references is two�fold� First� users with only a vague idea of what they are looking for
can easily browse the hierarchy tree� gradually narrowing down their �eld of interest
until they stumble� over the desired entry� Second� when using keywords to search
the whole Index for a given topic� a Web Directory classi�es the returned references
into categories� which allow a fast elimination of unwanted information�

However� directories usually feature only a fraction of the pages indexed by the
automated spiders and robots used by Web indices� While Lycos features more than
��� million pages� Yahoo� has only about one percent of this� one million pages� in
its database�� A human editorial sta� simply cannot keep up with the ever increasing

�As of May ��� Lycos Pro claims an index of ��� million pages� This 	gure serves as a lower bound
on the total number of existing pages� See http���www�lycos�com�press�pro��html�

�After one of the founder� then graduate student Jerry Yang�
�The ratio of entries per category is much higher than ten� however� due to the large number of
cross�linked topics �i�e� topics that contain the same entries� but are at di�erent points in the
hierarchy��

�Counted in July ����� Yahoo featured exactly ��������� entries� This number was semi�
automatically obtained by adding up the numbers given in brackets next to the top level entries�

��� Finding Information on the Web �	

� Arts and Humanities
Architecture� Photography� Literature � � �

� Business and Economy
Companies� Investing� Employment � � �

� Computers and Internet
Internet� WWW� Software� Multimedia � � �

� Education
Universities� K��� College Entrance � � �

� Entertainment
Cool Links� Movies� Music� Humor � � �

� Government
Military� Politics� Law� Taxes � � �

� Health
Medicine� Drugs� Diseases� Fitness � � �

� News and Media
Current Events� Magazines� TV� Newspapers � � �

� Recreation and Sports
Sports� Games� Travel� Autos� Outdoors � � �

� Reference
Libraries� Dictionaries� Phone Numbers � � �

� Regional
Countries� Regions� U�S� States � � �

� Science
CS� Biology� Astronomy� Engineering � � �

� Social Science
Anthropology� Sociology� Economics � � �

� Society and Culture
People� Environment� Religion � � �

Table ���� Top Level Hierarchies of the Yahoo� Web Directory� The �� top cate�
gories lead to over one million entries in over ��� thousand categories�

growth of the Web � as the Web grows larger and larger� the gap is more likely to
grow even wider�
And as good as this concept of less is more� works for popular topics�	 it is

bad for single pieces of information� With only about � of the Web covered�
 Web
directories often fail to �nd even a single reference in their database when dealing
with a fairly speci�c query such as a person�s name or the title of an academic paper�

����� Web Indices

Another popular way of searching the Web is using Web indices� In contrast to Web
directories� indices use automated processes to create their searchable index� making
it possible to handle the large number of documents on the Web much faster than
an editorial sta� of Web directories�
Figure ��� shows the general architecture of a standard Web index� An automated

process� often called spider� traverses the Web by following every hyperlink on an
HTML page� indexing all words occurring on the page in a central database� and

�where a couple of hundred references are much easier to sift through than a couple of thousand�
	assuming Lycos� ��� million indexed pages as a lower bound for the real size of the Web�

�� Softbots and the Information Food Chain

then going on to the next link� and the next link� and so forth���

IndexerSpider

Database

Retrieval
Engine

Web Document Space User Interface (Browser)

Figure ���� Generic Web Index Architecture� An automated process �spider� tra�
verses the Web and indexes the encountered documents in a central database�
Using a Web browser� this database can then be queried to obtain references
to documents that are possibly relevant to the speci�c set of keywords given�

To prepare a document for indexing� a lexical analyzer breaks it down into a
stream of words that includes tokens from both the title and the body of the docu�
ment� The words are run through a �stop list� to prevent common words from being
indexed� and are usually weighted by their frequency with which they appear in the
document �Pin	��� The database then stores an inverted index of all encountered
words to make queries fast� looking up a word produces a list of pointers to docu�
ments that contain that word� More complex queries can be handled by combining
the document lists for several words with conventional set operations�

Once such a spider has indexed a sizable portion of the Web in the database�
users are then able to query for pages containing certain keywords they�re interested
in� The documents�� containing some or all of those words are retrieved from the
index and presented to the user as an ordered list sorted by relevance���

Today� these indices are one of the most popular way of searching the Web for

�
Another way to think of it is that the Web is a large directed graph and that the spider is simply
exploring the graph using a graph traversal algorithm�

��A document in a Web index is usually represented by its title� its Web address in form of a
Uniform Resource Locator �URL�� and possibly a small excerpt �snippet� of the full text of the
original document�

��Relevance is usually determined according to the vector�space model �Sal���� although as with
most other aspects of �commercial� Web indices� this information is often proprietary�

��� Finding Information on the Web ��

information� However� even though they feature databases containing hundreds of
millions of pages� search indices su�er from two important drawbacks�

�� Large Answer Sets� Almost every imaginable English word and name now
has countless occurrences throughout the Web� This makes it all too easy for
index searches to be comprehensive beyond the point of usefulness� An average
search can easily produce a few hundred� if not thousand results� increased
by the fact that many default retrieval semantics further enlarge these sets by
including pages that feature only some of the keywords� Most users are not
likely to look through more than the top ten references returned� as studies by
the OpenText corporation �Win	�� point out� Even if a user does invest the
time to look through most� if not all� returned references� she could end up
spending a signi�cant amount of her time without �nding anything that would
justify the extra e�ort�

Service URLs claimed��

AltaVista �� million
Excite ��� million
HotBot �� million
Infoseek ��� million
Lycos Pro ��� million

Table ���� Web Indices Index Size� Popular Web indices feature between �� and ���
million documents in their databases� Assuming that the huge size of the Lycos
Pro catalog subsumes those of its competitors is premature� however� Searching
for the authors name using the �small� AltaVista catalog results in �� docu�
ments� the three times as large Lycos Pro catalog �nds only � �as of July �

��

�� Lack of Completeness� Even though Web indices have a vast coverage of mil�
lions and millions of pages� even the largest indices are far from being complete
for three reasons�

Studies by Selberg �SE	�� have shown that the Web evolves much faster than
those centralized indices can keep up with� It was found that no single service
chosen from a list of �ve of the most popular search engines would cover more
than �� of all returned references� when combining the output of all sources
into one collated list�

A similar problem arises from the partial indexing� practiced by many services�
In order to keep index time short and the database small� only a certain number
of pages at a each site are actually stored in the central index �Pik	
� Mon	
��
Not surprisingly� the speci�c set of pages indexed at a particular site varies

��See http���altavista�digital�com�� http���www�excite�com�Info�features�html�
http���www�infoseek�com�doc�pg�comparison�html� http���www�lycos�com�press�pro�html
and �Hot����

�� Softbots and the Information Food Chain

widely from service to service� Assuming� for example� that the huge size of the
Lycos Pro catalog subsumes those of its competitors is premature� Searching for
the authors name using the small� AltaVista catalog results in �� documents���

the three times as large Lycos Pro catalog �nds only � �as of July �		
��

Finally� pages that are not yet �interwoven� into the mesh of hyperlinks point�
ing to pages containing hyperlinks that will point to other pages� will never
be reached by any spider� Only when a page that is repeatedly indexed by
such an automated indexer �nally creates a link to this new page� and with
this including it into the �web� of interconnected hypertext documents� these
documents have a chance to get indexed by such a service�

The �rst drawback� answer sets that contain hundreds and thousands of rele�
vant� documents� can be remedied by using the sophisticated query language o�ered
by many services� as well as re�ning the query sub�sequentially until a reasonably
small set can then be manually searched� However� only few users are willing to in�
vest the extra time necessary to learn these specialized language constructs��� which
are then for most parts only usable at one particular service� while being non�existent
at another one or having a di�erent meaning at a third one�
Because of the second drawback� the lack of completeness� the user might even

have to repeat this process of query re�nement and translation into specialized query
syntax multiple times� using di�erent services to increase the overall completeness of
her search� Although this time�consuming endeavor might make it possible to �nd
the desired information in the end� a casual user is likely to give up much earlier in
the process�

����� Manual Search

When Vannevar Bush�s article As we may think� described in �	�� what would
be known today as the �rst hypertext system �Bus���� his idea was to let the user
�browse� for information by simply clicking on words or concept she was interested
in� just following her train of thought� From a speci�c entry point� � the users
homepage� her departmental or institutional homepage� or even the default page
of her browser � a user then would �nd information by simply following available
hyperlinks� until her journey would eventually take her to the desired document�
For example� when looking for Oren Etzioni�s latest paper� a user might start with

link from her own homepage that links to her personal repository of Web resources�
From there� she would follow a link to her school�s similar repository� which she
knows contains links to a list of higher academic institutions worldwide� Once there�
she would quickly locate North American universities� and within this category a
pointer to the University of Washington� The university homepage in turn contains

��Using �marc �langheinrich as the query term�
��The Lycos Pro search service features more than x operators� together with the ability to specify
a relevance function yourself�

��� Finding Information on the Web ��

links to all departmental homepages� so she would follow a link to the Department
of Computer Science� and from there on a link to a list of faculty� She would locate
Professor Etzioni�s homepage under E�� and �nally �nd a pointer to his recent paper
o� his homepage�
Of course� there is a considerable amount of background knowledge necessary to

succeed in such a manual search� In order to �nd a speci�c document� one must
have a fairly clear idea about which part of the Web this page might be located
in� For example� an academic paper as in the example above might be linked to
one or more of its authors homepages� which might in turn be accessible from their
departmental homepage� Although one could expect to know at least one author
of the paper� knowing the authors institution is already less likely� Or maybe the
institution decided to keep all publications in a central repository� to which the author
forgot to link from his homepage� In this case� a manual search has to backtrack and
try to �nd links to this repository somewhere higher up in the existing hierarchy�
It is easy to see that such an approach might result in several minutes of intensive

search� If the user stays concentrated enough without letting herself being distracted
by the wealth of links encountered during such a search� there might be a good chance
that the wanted page is found in the end� However� in case the user was unable to
locate the desired page� precious time has been wasted without any results at all�

����	 Web Agents

As the last three sections showed� current methods for �nding information on the
Web are far from perfect� either they return too much or too little� or they take
too long� Table ��� sums up the advantages and weaknesses of each approach� This
section describes how we can use intelligent agents to directly target the weaknesses
described above� A softbot� using all those mechanisms as its tools� can perform
tasks that would be extremely tiresome or time consuming for a user�
�Etz	�� keyed the term information food chain� �see �gure ����� the maze of

pages and hyperlinks that compromise the Web is the very bottom of the chain�
Web indices �such as WebCrawler or AltaVista� and Web directories �such as Yahoo�
or Lycos� A�Z� are information herbivores� grazing on those Web pages and regur�
girating them as searchable indices� Web agents represent information carnivores in
this framework � intelligently hunting and feating on the Web�s herbivores�
But in order to be acceptable� any Web agent has to meet the high standards set

by the Web Community�

� Robustness� Web users expect a working system� �� hours a day�
 days a
week� Tools that are most of the time o��line� will soon be removed from a
users personal bookmark �les�

� Speed � Reactivity� Virtually all Web based information systems begin
transmitting information within seconds � answers that take minutes will most
likely never been read�

� Softbots and the Information Food Chain

Search Method Advantages � Disadvantages

Web Directories � Small index keeps results manageable�
� Categories allow for direct browsing�
� Restricted search within category�
� Search results grouped by category�
� Index size too small for many categories� since it typi�

cally contains only about � of the available documents
on the Web�

Web Indices � Large coverage� �nd more pages�
� Large index size often leads to huge results set�
� Default retrieval semantics often increase result set by

including pages that feature only some of the keywords�
� Some services indices drop a certain percentage of pages

per site�
� Web grows and changes too fast�

Manual Search � Sophisticated� manages to �nd otherwise un�ndable
pages by using large amount of background knowledge�

� Time consuming� failures are expensive�
� Only works when su�cient background knowledge avail�

able�

Table ���� Popular Web Search Methods� This table summarizes the advantages and
disadvantages of the various search methods that are currently used to �nd
information on the Web�

� Added Value� The system has to result in a tangible bene�t for the user�
otherwise there is little incentive to use the new service�

General planning softbots like Rodney are not yet ready for these rigorous de�
mands of public on�line use� 	More here about why not
 sophisticated planning soft�
ware� often implemented in LISP� makes process memory intensive� brittle and time
consuming� Instead� research at the University of Washington focuses on what �Etz	��
calls the useful �rst paradigm� Instead of starting with grand ideas about intelli�
gence and issuing a promissory note that they will eventually yield useful intelligent
agents� we take opposite tack� we begin with useful softbots deployed on the Web�
and issue promissory note that they will evolve into more intelligent agents��

This useful��rst� bottom�up design follows a similar approach taken by Brooks
and others for building complete agents and testing them in �real world� environ�
ments� Focusing on emergent behavior instead of carefully crafted intelligence� they
try to avoid any simpli�cation in the agents environment� since it is very easy to
accidentally build a submodule of the systems which happens to rely on some of
those simpli�ed properties� � � the disease spreads and the complete system depends
in a subtle way on the simpli�ed world�� �Bro	��

��� Finding Information on the Web ��

Personal
Assistants

Mass
Services

Directories

Metacrawler

Yahoo!
AltaVista,

Indices,

Softbots

World Wide Web

Ahoy! (DRS),

Figure ���� The Information Food Chain� Information herbivores like Yahoo� and
AltaVista graze on Web pages and regurgirate them as searchable indices� on
which Information carnivores like the MetaCrawler and Ahoy� hunt and feast
	Etz
���

Also� if restricting the domains of intelligent agents to toy examples for the sake
of building truly intelligent� systems� the whole reason d�!etre for software agents
is lost� �KSC	��� since agents must provide solutions to real problems that are im�
portant to real users�

Addressing those real�life� problems� the Softbot Group at the University of
Washington developed and deployed a number of Web agents� as pictured in �gure
���� Ahoy�� Paper Mate and Joker� are the focus of this thesis� The ShopBot agent
is described in more detail in �DEW	
�� The MetaCrawler is the enabling technology
for DRS softbots� which are perched above it in the information food chain depicted
in �gure ��� ���

The MetaCrawler softbot provides a uni�ed interface for Web document searching�
It queries �ve of the most popular Web indices in parallel� eliminating the need for
users to try and retry queries across di�erent services��� Also� by providing a single
interface� MetaCrawler uni�es di�erences in query capabilities of each service� If a
user is looking for a speci�c phrase� MetaCrawler will use phrase searching for those
services that support it� while downloading and using its own phrase search for
those references returned by search services without this option� A more detailed
description of the MetaCrawler softbot can be found in �SE	���

Each of these softbots uses multiple Web tools or service on a person�s behalf�

��The arrows used in the softbot family tree in 	gure ��� represent a di�erent� chronological order�
��See problem of completeness mentioned in the last section�

�� Softbots and the Information Food Chain

ShopBot

Sims

Bargain FinderRodney

MetaCrawler ILA

Occam

Simon

Ahoy!

PaperMate Joker!

InfoManifold

Figure ���� The Softbot Family Tree� The black boxes represent softbots developed
at the University of Washington� MetaCrawler� Ahoy� and ShopBot have been
deployed on the Web� while Paper Mate and Joker� exist as experimental pro�
totypes� See 	Etz
��

enforcing a powerful abstraction� a person is able to state what they want� the softbot
is responsible for deciding which Web service to invoke in response and how to do so�
By bringing together the concepts of information agents and software robots� these
simple� yet powerful systems enable the user to delegate the laborious footwork of
searching the Web to an intelligent background task� sparing him from the need of
directly manipulating tens and hundreds of information sources�

� Dynamic Reference Sifters

In this chapter� we will present the concept of a Dynamic Reference Sifter �DRS�
System�� which is just another member of the growing number of softbots developed
at the University of Washington� and �lls the role of an information carnivore in our
food chain metaphor�

After some historical background we will enumerate our design goals and describe
the domains in which DRS�Systems are applicable� We then proceed to list the key
elements of the DRS architecture in more detail� and conclude with a brief summary
and discussion of our proposed framework�

��� Introduction

The Homepage Finder project� and with it our work on Dynamic Reference Sifters�
started out following a remark from the University of Washington CS department
chair Ed Lazowska� who suggested building a softbot that could �nd a persons home�
page� The generic DRS architecture is a direct result from our work on this challenge�
After trying a number of possible approaches to locating individuals homepages with
high accuracy �described in more detail in section ������� the DRS framework soon
emerged as the most useful and robust scheme� Although geared towards �nding a
speci�c type of page at �rst� the general mechanisms of this architecture� along with
a number of suitable domains �see section ������� suggested that DRS�System would
perform equally well at other tasks� Our results in chapter � seem to con�rm this�

An important aspect of our work were our e�orts to create not only an experi�
mental prototype used by a few number of people within our own research group�
but to provide a service that could be useful to a large number of people on the
Web� Fielding public services on the Web introduces a large number of challenges�
as outlined in the last section of our previous chapter� which seem tangential to the
actual research itself� However� as Etzioni puts it in �Etz	��� we need to recognize
that intelligent agents are ninety�nine percent computer science and one percent AI��

Taking speed and reliability of our prototype into account not only allows us
to respond to the common stereotype if it works� it ain�t AI�� but also o�ers an
immediate bene�t to the research itself� Instead of conducting experiments with a
handful of sample users� we can accumulate data from hundreds of users who use the
�elded service each day�

�� Dynamic Reference Sifters

Primary design goals �added value�

�� High coverage� In case the desired page can be found by any conven�
tional search engine� we want our DRS application to �nd it as well�

�� High accuracy� We only want truly relevant references displayed to
the user� so that the usual hundreds of relevant� references found by
traditional search engines are reduced to less than a handful� preferably
a single answer�

�� Graceful degradation� In case that no answer could be found� the
user should be left with the best information available to the system at
this point�

Secondary design goals

�� Robustness� The service should be available �� hours a day�
 hours a
week�

�� High speed� It should provide answers within seconds� or at least com�
parable to conventional search engines�

�� Reactivity� The user should be continuously informed about the search
progress�

Table ���� DRS Design Goals� Following the desiderata for Web agents described on
page �
� DRS�Systems need to be fast� robust and reactive� as well as providing
the user with enough added value to make its use worthwhile�

����� Design Goals

Our ideas for designing a new search service architecture fall into two categories�
which are summarized in table ���� The primary goal was to provide the user with
a real added value� by building an information agent that would combine both large
coverage and high accuracy� In case of a failed search� we wanted it to exhibit a
graceful degradation in performance� Instead of a plain Nothing found� message�
the agent should try to provide as much valuable information as possible� Secondary
design choices came more as pragmatic Web challenges� In order for any service on
the Web to be attractive� the system had to provide answers in a reasonable amount
of time� prove robust enough for a large number of users� and have the notion of
reactivity that would keep the user continuously informed about the search process�

��� Introduction �	

����� DRS Set Characteristics

Contrasted to Softbots in general� Dynamic Reference Sifters are very focused� Com�
pared to the original Internet Softbot�� Rodney� DRS�Systems are only good at one
speci�c task� Whereas Rodney tried to satisfy a wide variety of complex requests such
as Send the budget memos to Mitchell at CMU� or Move all TEX Sources into the
archive� unless they haven�t changed� and delete the remaining �les�� DRS�Systems
focus on requests of the form Find me X �� where X could be the homepage of
professor Weld�� the paper by Pettie Maes entitled Learning interface agents� or
that joke with the destroyer and the lighthouse��

The important di�erence is that the area of expertise of a DRS�System is re�
stricted to a single� well de�ned topic� such as homepage� academic papers� or jokes�
Such a specialized service does not have the expressive power of a full featured In�
ternet Softbot� but it allows us to build our intelligent agents bottom�up instead of
top�down� beginning with a fairly simple� but nevertheless useful agent that can
gradually increase in complexity� as more and more sophisticated goals are added
" instead of starting with a ambitious framework of intelligence� which has to be
massively re�engineered to make it usable��� As �KSC	�� points out� one of the most
di�cult tasks in agent design is indeed to de�ne speci�c tasks that are both feasible
using current technology� and are truly useful to the user��

In order to achieve this feasibility� we not only have to limit our softbot to the
single Find me X � task� but also more precisely de�ne what exactly we will allow
for X� � constraints characterize the class of pages that a DRS�System will be able
to �nd�

�� Availability� The desired information has to be available on the Web� Clearly�
our softbot can not provide an answer to questions concerning non�Web objects�
like Find me my car keys��� In addition� we demand that most member pages�
but not necessarily all of them� are accessible via traditional search services�
Although it would in theory be possible create a local index database in very
much the same way we described it for Web indices in section ������ the resource
demands would be well beyond the scope of a student project�

�� Focused attention� The DRS�System must know what the user is looking
for� Although some systems� like the Syskill � Webert system �PMB	�� or
Mitchell�s WebWatcher �AFJM	��� are trying to answer the request Find me
pages I am interested in�� the methods for describing these concepts� are not yet
precise enough to account for the high precision we demand� If the user herself
does not have a clear idea what she is looking for� the hierarchical browsing

�see �Bra��� for an account of the massive re�engineering necessary to transform an �intelligent
	rst� knowledge representation system into a usable one

�Although this might be a perfectly reasonable request for a physical agent� like a robot� or even
a softbot� once car keys would have their own Internet address �	�

�Explicit and �or implicit user feedback leads for example to a vector space model�

�� Dynamic Reference Sifters

capabilities of Web directories are much better suited than any form of user
solicited search��

�� Strong cohesion� It has to be possible to identify the desired features on
member pages� A question like Find me homepages of people with the same
birthday as mine� might be unambiguously stated� however� only few persons
might actually include information concerning their birthday on their personal
homepages��

�� Large cardinality� Sets that are small and fairly static� e�g�� the list of British
Universities� can easily be enumerated in manually created lists or directories�
rendering the use of a specialized softbot unnecessary�

�� Widely dispersed� Sets that are distributed from a central repository� such
as tax documents or white house press releases� can be comprehensively obtain
at the originating site� eliminating the need for a specialized search service�

Although the above constraints �see summary in table ���� sound overly restrictive�
they still leave a large enough number of possible domains� Examples include�

� Transportation schedules� More and more regional and national transporta�
tion providers have begun to o�er their current timetables on the Web� Not
only are changes in the schedule much cheaper to update on�line than reprinting
large amounts of paper handouts� but having a Web presence is often seen as
a relatively cheap way of o�ering a better quality of service to an ever growing
number of Web�literate customers�

� Personal homepages� Personal homepages often contain important contact
information or publications� as well as background information and general
interests of people� This is a highly dynamic and large list� and even though
many individuals invest extra e�orts to register their page with a whitepage or
directory service� only a fraction of today�s available homepages are probably
available in these manually generated lists� By soliciting extra information like
the a�liation or even the email address of the person one is looking for� the
DRS�System can achieve extra accuracy�

� Business homepages� The number of business homepages begin to expand
rapidly� as more and more companies establish an online presence� Although
companies do have the incentive to advertise their Web presence and register
it with the most number of possible search services� the sheer number of regis�
trations make it hard for directories to keep up with this ever changing list� In
addition� a user searching for a company with a common title is most likely to

�By traversing down the hierarchy tree� a user can gradually de	ne the topic of her search simply
be following the existing category that seems to best describe her information needs�

�Although additional data sources like �the world birthday net� might add this missing piece of
information�

��� DRS Architecture ��

end up with a large number of �relevant� entries even with directories� However�
if someone is looking for a number of companies in a particular kind of area� a
directory listing would be more appropriate��

� Academic papers� The initial idea of the World Wide Web was the exchange
of scienti�c work and results� and more and more researchers and publishers
are putting their work online� Ideally� all writing would be done in HTML
or its superclass SGML�� so that articles could be indexed like all other pages
�with the usual limitations�� However� the lack of layout control and support
of formulas in the early HTML drafts still forces a large number of authors to
use Postscript or PDF formats for their work� which� even though accessible
through the Web� currently prevent indexing by standard search engines�

� Product reviews� A large number of independent magazines� as well as man�
ufacturers� provide detailed description of products on�line� Although most
sites have somewhat adequate search interfaces within their own site� it is not
trivial to locate the correct magazine or manufacturer for each product of in�
terest� A DRS�System could help to quickly locate a product description �i�e�
the features of a recent notebook� or review �i�e� of a new video camera��

� Jokes� As the Internet continues to become a global communication medium�
more and more people begin to exchange community oriented information such
as recipes� political views� or even jokes� Many individuals post their favorite
jokes next to their latest cookie recipes and picture collection o� their personal
homepage� Using a DRS�System� forgetting the punch line of a joke is not an
issue anymore�

After we have discussed the key elements of DRS�System in the next section�
we will return to these domains and brie�y describe each element in its domain
speci�c implementation� to give an idea about the actual use of DRS in a search
application� Chapter � will then describe our �elded prototype Ahoy� The Homepage
Finder in greater detail� while chapter � will report our initial results with two further
prototypes in the academic paper and on�line jokes domain�

��� DRS Architecture

Now that we have outlined the design goals for our DRS�System� we will enumerate
the key elements a DRS architecture uses to achieve this� Some of the following
elements will already be familiar to the reader� as they directly relate to our desiderata
put forth in the last section� while some introduce new concepts that will be discussed
in more detail in the following paragraphs�

�According to our requirement of focused attention� this would fail to constitute a tightly bound
search for only a few references�

�HTML and SGML are � � �

�� Dynamic Reference Sifters

�� Availability� Many� but not necessarily all� of their members are
available using a more traditional reference source �e�g�� keyword
queries to Web Indices like AltaVista��

�� Focused attention� During a given search� a user is interested in
very few� and often only one� members of the class� and the user
can pose a query speci�c enough to exclude other members�

�� Strong cohesion� Their members are easily identi�able as be�
longing to the class�

�� Large cardinality� They are too large or too dynamic to be ex�
haustively indexed by hand�

�� Widely dispersed� No central repository exists where all or most
members can be found�

Table ���� DRS Set Characteristics� DRS�Systems are by no means appropriate for all
Web searches� They work best for classes of pages with the above characteristics�

The basic idea of DRS is that of a sophisticated �lter� using the output of general
purpose search services� combined with additional� orthogonal information sources�
domain speci�c heuristics� and a �exible categorization scheme� a DRS�System �lters
out all but a few� highly relevant pages�
Instead providing a single service that achieves a moderate performance in a

wide variety of domains� a single DRS�System focuses on one domain only� where its
custom�tailored elements� taken from the generic DRS architecture� provide it with
enough domain knowledge to achieve our ambitious design goals�
A DRS�System usually contains a number of the following key elements� working

together as depicted in �gure ����

�� Reference source� A comprehensive source of candidate references� �e�g�� a
Web index like AltaVista� or even better� a comprehensive Meta�Search service
like the MetaCrawler�

�� Cross �lter� A component that �lters candidate references based on informa�
tion from a second� orthogonal source� �e�g�� a database of e�mail addresses�

�� Heuristic�based �lter� A component that increases accuracy by analyzing
the candidates� textual content using domain�speci�c heuristics�

�� Buckets� A component that categorizes candidate references into ranked and
labeled buckets of matches and near misses�

�� URL Generator� A component that synthesizes candidate Uniform Resource
Locators �URLs� �BL�	� when step � through � fail to yield viable candidates�

��� DRS Architecture ��

Base Reference
Source

Orthogonal
Reference Sources

References
found

No references found

Information
Sources

Analysis &
Classification

URL Extractor

Heuristic Filter

Cross Filter

URL Generator

Bucketing

Bucketing

Results

User Query

Learning

Filtering

Figure ���� DRS Control Flow� After sending the user�s query to its information sources�
the returned references are analyzed and sorted into buckets� In case a relevant
reference was found� its general pattern is extracted� Otherwise a list of possible
URLs is generated and tried directly�

� Dynamic Reference Sifters

�� URL Pattern Extractor� A mechanism for learning about the general pat�
terns found in URLs based on previous� successful searches� The patterns are
used by the URL Generator�

The following paragraphs examine each of these elements in more detail� The
six elements are grouped into three categories� information sources� �ltering� and
learning� A DRS�System for any given domain does not necessarily have to contain
all of these elements � some could feature only a single element from each group� or
even choose to skip one category completely� Although the overall framework of DRS
is domain independent� actual implementations could vary their use of each element
according to the problem at hand�

����� Information sources

Information sources are the foundation for any DRS�System� Here is where all in�
formation comes from that is eventually presented to the user� Information Sources
come in two �avors� base reference sources and orthogonal reference sources�

Base reference sources form the set of documents that eventually contain the
answer that we are looking for� Since comprehensiveness is important here� general
Web indices provide usually the most coverage� or� even better� using a meta search
service that pools the answers from a number of indices� In theory� though� any
information source on the Web could potentially be used as a base reference source�
as long as it contains the answer the user is looking for�

DRS�Systems use these base reference sources in a very broad way� In order
to achieve high recall� queries to those underlying information sources are posed
as general as possible� to make sure that the desired information is found among
the returned references� Once the base reference sources have returned all available
references� a DRS�System then relies on it�s sophisticated �ltering and bucketing
mechanisms to �nd the few relevant references�

Orthogonal reference sources can be used in two di�erent ways� Intuitively� they
can be used to acquire additional� so called orthogonal information related to the
speci�c information the user is looking for� For example� when looking for an indi�
viduals� homepage� querying an email�whitepage directory at the same time could
produce the email address of the person� which� in case no homepage could be found�
might still prove useful to the user�

Additionally� orthogonal reference sources can be directly used for �ltering� Any
additional sources� as long as they share common �elds with our base reference set�
can be combined to form a set of higher precision� based on their intersection� For
example� during a search for an individuals� homepage� an institutional database
could provide a list of possible hostnames for that persons institution� Later� a DRS�
System could then compare those with the list of homepage references found using
the base reference source " in case of an identical hostname� we could assume that
we found a reference at the right institution�

��� DRS Architecture ��

As we move on to implementational details� section ����� contains more informa�
tion about how to use these sources in detail� The next section will explain the basic
idea of �ltering in a DRS�System�

����� Filtering
 Feature Analysis� Classi�cation � Selection

Although the last section already mentioned �ltering by using orthogonal information
sources� the following section will explain the idea of �ltering in more detail� and
how heuristics together with a �exible bucketing algorithm can help DRS�Systems
to provide dynamic responses that always give the best possible answer� even in case
of a failure�
The process of �ltering in a DRS�System is a three step approach� First� each

reference is analyzed according to certain domain dependent features relevant to the
users query� Second� each reference is categorized into several pre�de�ned buckets�
which are labeled according to their respective analyzed content�	 Finally� a selec�
tion mechanism locates the best� available �i�e� �lled� bucket which can then be
displayed to the user as the result of her search�

Assessing Relevance� Feature Analysis

During the analysis� a DRS�System examines certain parts of the base references�
most commonly the title� URL� and the snippet �the short piece of document excerpt
common with most Web indices� usually the �rst �� words of the text� of the reference
and categorize them along the di�erent features deemed relevant for that particular
domain given the current query� For example� relevant features for a DRS�System in
the personal homepage domain could include the owner of the reference �i�e� whether
�rstname or lastname of the person appears in the title�� its location �whether it is
in the country the user speci�ed� or at the institution that is suppose to employ the
person� and its type �i�e� if its title contains the word homepage�� which would be
favorable� or publications�� which would not��
Additionally available information from orthogonal references� together with the

query parameters given by the user� can be used to provide the analyzer with values
to compare each document with� For example� when looking for a speci�c academic
paper� an on�line database for scienti�c abstracts could provide the system with the
institutional a�liation of the authors� thus providing a list of domains the URL of a
reference should contain�
This feature analysis can be seen as a mapping from query parameter Q� or�

thogonal information O and document parts P to domain speci�c document features
F �

Q�O � P
�
�� F

�This process might be repeated in the case when additional downloads are necessary� so that a
	rst analysis can 	nd the most promising candidates to download� while a second analysis then
	nds the actual relevant pages among the downloaded documents�

�� Dynamic Reference Sifters

Speci�cally� given a query Q and its parameter q�� � � �qk with values wi�� � � �wini �
Wi� i # �� � �k� a set O of orthogonal sources o�� � � �ol and their results ri�� � � �rini �
Ri� i # �� � �l� a given page P with title t � T � URL u � U � snippet s � S and
full�text dj � D� and a set F of domain speci�c features f�� � � �fm with possible
values vi�� � � �vini � Vm� i # �� � �m� a feature analysis function � de�nes the following
relation�

�W� � � � �Wk�� �R� � � � �� Rl�� �T � U � S �D�
�
�� �V� � � � �� Vn�

Since the full text d of a document is not directly available from the base reference
sources� a DRS�System attempts to use only the title t� URL u and eventually snippet
s of each page�
 However� in certain situations or domains where it is necessary
to examine the full text d of the document� the DRS�System has to download a
page to assert this unknown value � a time and bandwidth consuming process� By
conducting a partial analysis using the directly available document parts t� u and
s only� a DRS�System can signi�cantly reduce the number of documents that are
downloaded� When proceeding in the order suggested from such a partial analysis�
the DRS�System has a much higher chance of �nding the desired information on the
�rst few requested pages�

Sorting it out� Document Classication

After all feature values have been computed by the analysis function� each reference is
sorted into labeled containers� called buckets� These buckets allow a DRS�System to
sort out pages with di�erent features during the sifting� through the comprehensive
set of reference sources� Each bucket is labeled with a distinctive combination of
values of the analyzed features� and once all references have been sorted into the
appropriate buckets� a DRS�System can easily identify the bucket containing the
most promising pages " it is the one with the best combination of values from the
feature analysis�

The number of buckets needed to categorize all elements of any search depend on
the number of features and their possible values� We assume only discrete values � any
continuous values would need to be expressed in discrete ranges� Having identi�ed
m relevant features f�� � � �fm with possible values vi�� � � �vinm � Vm� i # �� � �m� the
total number of buckets is

b #
mY

i��

nm

The easiest way to arrange these is naturally in an m�dimensional space� featuring ni
distinct values on each axis i� An example is shown in �gure ���� Such an arrangement
is called a DRS�Table�

	Not all Web indices provide snippets� Nor do references featured in those services that provide
snippets always include one�

��� DRS Architecture ��

v33

v32

v31

1

f 3

fv v

v

2f

v11 12 13

v

v23

22

21

K (v ,v ,v)i 11 23 32

�a� Generic Format

firstname only
lastname only

full name

correct inst.
wrong institu

tion
location

ty
pe

owner

wrong country

list page

home page

unknown
(full name, wrong country, list page)Ki

�b� Personal Homepage Domain

Figure ���� DRS Table� Each axis represents one feature as reported by the analysis
function� The example on the right side shows part of a possible con�guration
in the personal homepage domain� which is described in more depth in chapter
�� including one particular bucket Ki that would contain references featuring
the full name of the person on a list page in the wrong country�

Choosing Results� Bucket Selection

When arranging all values within each feature �i�e� along each axis� in descending
order of relevance to the query� the origin of such an n�dimensional space will contain
the most relevant bucket� with more and more irrelevant buckets the further away
from the origin�

However� not all features carry the same weight� Some features only carry a
preference �i�e� in the individuals� homepage domain� of preferring pages with the
title homepage� over those with only the name as the title�� while others are of
more importance to the query �like the speci�ed country� when looking for someone�s
homepage with the name John Smith� in Great Britain� the user explicitly stated
that she is not interested in homepages of other John Smith� say� in Denmark����

In order to equalize over these di�erent scales� an additional layer of so called zones
provides a high level abstraction for the rather detailed analytical results expressed in
each individual bucket� These �domain dependent� zones account for the di�erences
between mere cosmetic features and more essential ones� Zones can then be labeled
in a more abstract way� like an unambiguous Success � found the page you were
looking for�� a cautious Partial Success � found a page at the right institution� but
doesn�t appear to be a personal homepage�� or an explicit Failure � could only �nd
pages in a di�erent country����

�
Although she might still be interested in out�of�country references� If this is the best thing the
DRS�System could 	nd� it could be possible that John Smith recently moved to Denmark�

��All examples taken from the homepage domain�

�� Dynamic Reference Sifters

Once all available references are sorted into the appropriate buckets� �nding the
answer is simply a matter of taking the best� zone� locating the best� bucket within
this zone� and displaying its content together with the zone�s title to the user�
In some cases� however� especially among the zones that do not directly represent

a successful outcome of our search� it is hard to know which one of them will be the
most useful for the user� Instead of just displaying the zone that the designer of the
DRS�System deemed best� zones can have pointers to other zones� thus indicating
alternatives among certain answers that each might be of value to the user� Thus� if
only an ambiguous answer could be found� a DRS�System still presents the user with
the best� zone that seems to be relevant to her search� but o�ers links to possible
alternative zones� in case the answer could not be found in the original zone presented
to the user�
In theory� all zones could have associated alternative zones� but in practice this

only makes sense for lower quality zones� However� it is up to the �nal implemen�
tation of a DRS�System within each domain to decide when it makes sense to o�er
alternatives to the user�

Filtering Summary

Let us summarize this process again� First� a simple heuristic analysis function �
categorizes each reference P according to a number of prede�ned features f�� � � �fm�
These features are computed by combining the title t� URL u� snippet s and eventu�
ally full�text information d of the document together with the values wi�� � � �wini of a
query Q speci�ed by the user and the results ri�� � � �rini of a set of orthogonal sources
O� Each reference is then sorted into a bucket Ki that represents its particular fea�
ture combination vi�� � � �vini and is labeled accordingly� The buckets are arranged in
an m�dimensional space� called a DRS�Table� with better values towards the origin�
The Table is itself subdivided into a comparatively small number of zones� which
combine buckets that have slightly di�erent features� but the same overall quality
�i�e� their feature di�erences are only of cosmetic nature�� Once all references are
sorted into the Table�s buckets� the desired answer is found in the best zone that
contains at least a single non�empty bucket� The best zone is either drawn from a
prede�ned ranking of all available zones� or simply by their distance from the center
of the table� Within this best� zone� the content of the best� bucket� that is� the
bucket closest to the origin of the Table� is then displayed to the user� together with
the label of its zone as a high level description of the output�

����� Learning

An opportunity that hasn�t been discussed before is the ability of DRS�System to
use techniques of machine learning to improve performance over time� The following
paragraphs will explain the notion of URL pattern extraction and URL generation�
and how these concepts can enable a DRS�System to �nd references even though
they can�t be found by using its standard base reference source�

��� DRS Architecture �	

A great number of personal assistants and Internet services learn about the pref�
erences of a single user��� However� these approaches all demand a large number
of examples given by each individual user� or� in the case of collaborative �ltering
systems a large number of users� before the system can acquire the data necessary
for su�cient performance�
Instead of learning about user preferences of an often very limited user base� a

DRS�System can harness the power of many users to learn about the Web itself �i�e�
its structure�� For each successfully located reference found� it extracts a general
description of its location� Later� this can be used for directly locating pages that
could not be found in the base reference set�
Since domain speci�c heuristics give a DRS�System enough added value even

without any learning� it does not fall prone to the familiar problem of many machine
learning systems� which perform only well once a su�cient number of people have
used it� while many users resent using it until it exhibits a su�cient level of perfor�
mance� As more and more users provide search examples� a DRS�System can instead
incrementally add more and more expertise in its �eld� without requiring an initial
number of users to su�er through bad performance for the sake of later performance
improvements�
The learning process in DRS�Systems can be subdivided in two parts� which are

described in the following paragraphs� The basic idea is to remember successful
searches by extracting general patterns from correct URLs� and later using these
patterns to generate new URLs which enable the DRS�System to �nd the correct
page even though it could not be found in the base reference set�

URL extractor

Given a URL of a relevant reference and the according query parameter �e�g�� in the
homepage domain� the person�s �rstname� lastname� and institution� a DRS�System
tries to extract the variant parts of the URL� i�e� those that depend on the spe�
ci�c information the page is dealing with� For each domain� a speci�c extraction
module has to be de�ned� which is able to analyze the URL looking for domain
speci�c patterns and strings� Together with the current query parameters� and stan�
dard domain heuristics� the DRS�System can then create a pattern� with so called
placeholders reserving parts of the URL that are query dependent� We call such an
extracted pattern a general hypothesis�
Let us look at an example in the academic paper domain� The DRS�System

successfully found a paper co�authored by Oren Etzioni at the following address�

http���www�cs�washington�edu�research�softbots�pub�etzioni�cacm���ps

Using domain speci�c heuristics together with the query parameter� the DRS�
System is able to extract the following pattern�

��e�g�� WebWatcher �AFJM���� Syskill � Webert �PMB���� Mitchell�s Calendar Apprentice
�MCF���� or Lang�s Newsweeder �Lan����

�� Dynamic Reference Sifters

URL Extractor

Orthogonal Information
Sources

Query

http://www.yoyodyne.com/homes/doe/welcome.html

http://www.yoyodyne.com/homes/<L>/welcome.html

<F>irst: John
<L>ast: Doe <E>mail: doe@yoyodyne.com

http://www.yoyodyne.com/homes/<E>/welcome.html

URL
homepage

hypotheses
general

Figure ���� URL Extractor� Using the URL of a successfully located homepage� together
with information from an orthogonal reference source �email directory� and the
query itself� the DRS�System generates two general hypotheses by substituting
the placeholder �L� and �E�� representing lastname and email�username� for
the string doe�

http���www�cs�washington�edu�research�softbots�pub��L���F���S�

�L�	 �T� and �S� are placeholders for the URL�s variable parts of the authors
lastname� the papers �lename� and su�x� respectively� The rest of the pattern is
called the �xed part� and is assumed constant for other elements of the reference
set �i�e� academic papers� in our example� that share common parts �such as the
institution�� Figure ��� shows another example from the personal homepage domain�
In the next section we will explain how these patterns can then be used to increase
both recall and precision in subsequent searches�

URL generator

The URL generator part is responsible for applying the extracted patterns in case
the DRS�System could not �nd any promising references in the base reference set�
The same domain heuristics that enabled it to map the variable query parameter
appearing in the original URL to general placeholders can now be used to reinstantiate
a full URL from the general pattern and the new� yet unsuccessful query�
To continue with our previous example� another user might try to locate Dan

Weld�s Least�commitment planning� paper� Given the query parameter firstname

 dan	 lastname
 weld and the knowledge that Dan Weld is a professor at the
University of Washington �instname
 university of washington�� a DRS�System
could generate the following instantiated hypotheses�

http���www�cs�washington�edu�research�softbots�pub�weld�lcp�ps

http���www�cs�washington�edu�research�softbots�pub�weld�lcp�html

http���www�cs�washington�edu�research�softbots�pub�weld�lcp�pdf

��� DRS Architecture ��

Orthogonal Information
Sources

URL Generator

Query

<L>ast: Smith
<F>irst: Jane

<E>mail: js@yoyodyne.com

http://www.yoyodyne.com/homes/<L>/welcome.html

http://www.yoyodyne.com/homes/<E>/welcome.html

http://www.yoyodyne.com/homes/js/welcome.html

http://www.yoyodyne.com/homes/smith/welcome.html

instantiated
hypotheses

hypotheses
general

Figure ���� URL Generator� Using previously acquired general hypotheses� together
with information from an orthogonal reference source �email directory� and the
query itself� the DRS�System is able to generate two instantiated hypotheses

by substituting current query values of lastname and email�username for the
placeholders �L� and �E�� Note how the single homepage URL in �gure ��� has
led to two instantiated hypotheses�

The reader might object that it is highly unlikely that we could locate any paper
this way� for although lastname and �le�su�x provide a reasonable small space� the
mapping from paper title to �lename proves to be too arbitrary� Since the exact
mapping from the single� extracted general hypothesis to a list of possible instantiated
hypotheses is dependent on the domain speci�c implementation� we might in the case
of academic papers refrain from generating direct URLs that point to speci�c papers�
but choose to only generate index URLs like

http���www�cs�washington�edu�research�softbots�pub�weld�

in order to get a default index �le of Weld�s paper directory� which might then
be searched for a link to the correct link�
However the �nal mapping from general to instantiated hypothesis turns out to

be implemented� the usage remains the same� In the case of a failed search� a DRS�
System is able to directly search for the desired page by using successful searches
from the past in the form of general hypotheses� which are then mapped to a number
of instantiated hypotheses� Figure ��� shows this process for the example from �gure
����

Pattern selection

One �nal question remains� though� and that is how a DRS�System can select the
hypothesis to instantiate if more than one general hypotheses has been extracted
previously�

�� Dynamic Reference Sifters

A �rst selection is made by determining the correct institution to start a direct
search at� For personal homepages or academic papers� this might either be obvious
from the given query �where the user can explicitly specify the institution she be�
lieves stores the desired information�� result from additional information through an
orthogonal reference sources �like an email address indicating the company the per�
son is working for�� or stem from direct user soliciting �i�e� prompting for selecting a
site to search at�� In other domains we might notice a common repository address for
many successful searches� and thus choose a small number of possible repositories to
search based on the above mentioned information �i�e� query information� orthogonal
sources� or user soliciting��
Once a list of institution and$or departments$server have been established� the

list of known hypotheses at these sites are ordered according to statistics regarding
successful and unsuccessful applications of each single hypotheses in previous direct
searches� Statistics could simply be keeping track of which hypothesis has been
most recently successful in locating a personal homepage� or they could include the
number of times a particular hypothesis has been successfully applied� or even take
into account how long ago it was that is had been successful���

When examining these statistical values� a DRS�System can make use of the
hierarchical nature of the Web and solicit information higher up in the hierarchy
in case the individual server data is not su�cient� For example� should the data
gathered for hypotheses on the server www�cs�washington�edu not provide enough
con�dence for imposing a ranking among the di�erent hypotheses� we might examine
data gathered among all servers within the CS department� Should still be data
missing� we could solicit the performance of all hypotheses across the University of
Washington� or even educational sites in general�

����� Sample domain implementations

Tables ��� and ��� give brief examples of each DRS element for the six domains
listed in section ������ A more detailed account of a particular domain� personal
homepages� is given in the next chapter� while chapter � describes two additional�
brief example implementations for academic papers and jokes�

��� Summary � Discussion

The World Wide Web is an ever growing� vast information space� When trying to
�nd speci�c information on it� intelligent agents in general� and softbots in particular�
can signi�cantly reduce the amount of e�ort needed on behalf of the human� Softbots
help people using the Internet and Unix by using the same tools as human do� Using
softbots as information agents� we propose a new kind of softbot called Dynamic
Reference Sifters �DRS�System��

��Section ����� describes an experiment that contrasts a number of possible measures�

��� Summary � Discussion ��

E
le
m
e
n
t

T
ra
n
sp
o
rt
a
ti
o
n

P
ro
d
u
c
t
re
v
ie
w
s

B
u
si
n
e
ss
h
o
m
e
p
a
g
e
s

Q
u
e
ry

O
ri
g
in
�
d
es
ti
n
a
ti
o
n
�
m
o
d
e
o
f

tr
a
n
sp
o
rt
a
ti
o
n
�
tr
a
n
sp
o
rt
a
ti
o
n

co
m
p
a
n
y�
d
a
te
o
f
tr
av
el
�
ro
u
te

n
u
m
b
er
�
id
en
ti
	
ca
ti
o
n
�

C
o
m
p
a
n
y
n
a
m
e�
lo
ca
ti
o
n
�
	
el
d
�

p
ro
d
u
ct
�

P
ro
d
u
ct
ti
tl
e�
m
a
n
u
fa
ct
u
re
r�

ca
te
g
o
ry
�

B
a
se

re
fe
re
n
c
e
s

S
er
ie
s
o
f
W
eb
in
d
ic
es
q
u
er
ie
s
fo
r

o
ri
g
in
a
n
d
d
es
ti
n
a
ti
o
n
�
a
lo
n
g
w
it
h

m
o
d
e
o
f
tr
a
n
sp
o
rt
a
ti
o
n
�

S
ea
rc
h
fo
r
co
m
p
a
n
y
n
a
m
e�

ev
en
tu
a
ll
y
g
ro
u
p
ed
a
s
a
p
h
ra
se
�

Q
u
er
y
fo
r
p
ro
d
u
ct
ti
tl
e�
in
cl
u
d
in
g

st
a
n
d
a
rd
re
v
ie
w
w
o
rd
s
li
k
e

�
re
v
ie
w
�
o
r
�
d
es
cr
ip
ti
o
n
�
�

O
rt
h
o
g
o
n
a
l

re
fe
re
n
c
e
s

G
eo
g
ra
p
h
ic
a
l
d
a
ta
b
a
se
�
w
h
ic
h

w
o
u
ld
a
ll
ow
a
ss
o
ci
a
ti
n
g
ci
ti
es
a
n
d

re
g
io
n
s
w
it
h
co
u
n
tr
ie
s
a
n
d

n
ei
g
h
b
o
ri
n
g
ci
ti
es
�
D
a
ta
b
a
se
o
f

tr
a
n
sp
o
rt
a
ti
o
n
co
rp
o
ra
ti
o
n
s
w
o
rl
d

w
id
e�

Y
el
lo
w
p
a
g
es
o
r
in
v
es
tm
en
t
se
rv
ic
es

co
u
ld
p
ro
v
id
e
p
o
st
a
l
a
d
d
re
ss
o
r

te
le
p
h
o
n
e
n
u
m
b
er
�

If
ca
te
g
o
ry
g
iv
en
�
u
se
W
eb

d
ir
ec
to
ri
es
re
v
ie
w
se
ct
io
n
fo
r
li
st
o
f

si
te
s
th
a
t
o
�
er
re
v
ie
w
s
in
th
is

ca
te
g
o
ry
�
If
a
m
a
n
u
fa
ct
u
re
r
g
iv
en
�

lo
o
k
u
p
h
o
m
ep
a
g
e
u
si
n
g
a
n

in
st
it
u
ti
o
n
a
l
d
a
ta
b
a
se
�

H
e
u
ri
st
ic
s

P
a
g
e
co
n
ta
in
s
ta
b
le
li
k
e
st
ru
ct
u
re
�

o
ri
g
in
a
n
d
d
es
ti
n
a
ti
o
n
o
cc
u
r
o
n

p
a
g
e�
ti
m
es
a
n
d
ro
u
te
n
u
m
b
er
s

a
p
p
ea
r
o
n
p
a
g
e�

N
a
m
e
o
f
th
e
co
m
p
a
n
y
fe
a
tu
re
d
in

ei
th
er
ti
tl
e
o
r
co
n
te
n
t
o
f
th
e

d
o
cu
m
en
t
o
r
�e
v
en
tu
a
ll
y
in

a
b
b
re
v
ia
te
d
fo
rm
�
in
U
R
L
�

co
p
y
ri
g
h
t
n
o
ti
ce
s�
co
m
p
a
n
y
te
rm
s

�s
u
ch
a
s
�
In
c�
o
r
�
C
o
�
��
h
ig
h

n
u
m
b
er
o
f
im
a
g
es
o
r
im
a
g
em
a
p
s
o
n

p
a
g
e�
p
a
g
e
U
R
L
cl
o
se
to
se
rv
er

ro
o
t�

C
o
n
ta
in
s
th
e
p
ro
d
u
ct
n
a
m
e
a
n
d

ev
en
tu
a
ll
y
�r
ev
ie
w
k
ey
w
o
rd
s�
�l
ik
e

�
re
v
ie
w
�
�
in
ei
th
er
te
x
t
o
r
U
R
L
�

p
ro
d
u
ct
ti
tl
e
a
p
p
ea
rs
in
th
e
ti
tl
e�
o
r

a
b
b
re
v
ia
te
d
in
th
e
U
R
L
�

B
u
ck
e
ti
n
g

D
eg
re
es
o
f
m
a
tc
h
in
g
fo
r
co
u
n
tr
y�

o
ri
g
in
�
d
es
ti
n
a
ti
o
n
�
m
o
d
e
a
n
d

tr
a
n
sp
o
rt
a
ti
o
n
p
ro
v
id
er
�
�t
im
et
a
b
le
�

li
k
el
ih
o
o
d
�

D
eg
re
es
o
f
m
a
tc
h
in
g
fo
r
co
u
n
tr
y

a
n
d
se
rv
er
n
a
m
e�
p
ro
d
u
ct
a
n
d

co
m
p
a
n
y
n
a
m
e�
a
n
d
lo
ca
ti
o
n
in

se
rv
er
tr
ee
�d
is
ta
n
ce
to
ro
o
t�
�

P
ro
d
u
ct
n
a
m
e
m
a
tc
h
�
ca
te
g
o
ry

m
a
tc
h
�
�
re
v
ie
w
�
n
es
s�
lo
ca
ti
o
n
�a
t

k
n
ow
n
re
v
ie
w
er
s
si
te
�
a
t

m
a
n
u
fa
ct
u
re
rs
si
te
��

L
e
a
rn
in
g

C
it
y
�t
o
�p
ro
v
id
er
a
ss
o
ci
a
ti
o
n
s�

g
eo
g
ra
p
h
ic
a
ss
o
ci
a
ti
o
n
s�
W
eb
p
a
g
e

o
rg
a
n
iz
a
ti
o
n
o
n
a
p
ro
v
id
er
to

p
ro
v
id
er
b
a
si
s�

C
a
ch
e
co
m
p
a
n
y
h
o
m
ep
a
g
es
�

co
m
p
il
e
ow
n
li
st
o
f
co
m
p
a
n
ie
s
o
n

th
e
W
eb
�

R
ev
ie
w
re
p
o
si
to
ri
es
�
R
ev
ie
w
s
p
er

p
ro
d
u
ct
�

T
ab
le
��
��
Im
p
le
m
e
n
ta
ti
o
n
S
a
m
p
le
s�
T
h
is
ta
b
le
li
st
s
th
e
d
om
ai
n
ex
am
p
le
s
gi
ve
n
in
se
ct
io
n
��
��
�
to
ge
th
er
w
it
h
p
os
si
b
le
im
p
le
m
en
�

ta
ti
on
s
of
th
e
ge
n
er
ic
D
R
S
�S
y
st
em
fe
at
u
re
s�

� Dynamic Reference Sifters

E
le
m
e
n
t

P
e
rso
n
a
l
h
o
m
e
p
a
g
e
s

A
c
a
d
e
m
ic
p
a
p
e
rs

O
n
�lin
e
jo
k
e
s

Q
u
e
ry

F
irstn
a
m
es�
la
stn
a
m
e�
in
stitu
tio
n
�

em
a
il
a
d
d
ress�
co
u
n
try�

P
a
p
er
title�
a
u
th
o
rs�
in
stitu
tio
n
s�

su
b
ject
k
ey
w
o
rd
s�

W
o
rd
s�
p
h
ra
ses
rem
em
b
ered
fro
m

th
e
jo
k
e�

B
a
se

re
fe
re
n
c
e
s

Q
u
ery
co
n
ta
in
in
g
o
n
ly
th
e
p
erso
n
s

	
rst�
a
n
d
la
stn
a
m
e
to
a
W
eb
in
d
ex
�

S
ea
rch
fo
r
a
u
th
o
r
a
n
d
title
�a
s
a

p
h
ra
se��
In
a
d
d
itio
n
�
sea
rch
fo
r

lin
k
s
fea
tu
rin
g
th
e
p
a
p
er
title�
a
s

w
ell
a
s
p
a
g
es
w
ith
th
e
p
a
p
er
title

a
s
th
e
d
o
cu
m
en
t
title

Q
u
ery
fo
r
p
h
ra
se
a
n
d
k
ey
w
o
rd
s
o
f

jo
k
e�
a
lo
n
g
w
ith
�
jo
k
e�
w
o
rd
s�
su
ch

a
s
h
u
m
o
r
o
r
fu
n
in
tex
t�
title
o
r

U
R
L
�

O
rth
o
g
o
n
a
l

re
fe
re
n
c
e
s

A
d
a
ta
b
a
se
o
f
in
stitu
tio
n
s
su
p
p
lies

a
list
o
f
sites
a
t
w
h
ich
th
e

h
o
m
ep
a
g
e
co
u
ld
b
e
lo
ca
ted
�
in
ca
se

th
e
q
u
ery
in
clu
d
ed
a
�
lia
tio
n

in
fo
rm
a
tio
n
�
E
m
a
il
w
h
itep
a
g
e

serv
ices
a
re
q
u
eried
w
ith
th
e

p
erso
n
s
n
a
m
e
a
n
d
su
p
p
ly
p
o
ssib
le

lo
g
in
n
a
m
es
th
a
t
m
ig
h
t
a
p
p
ea
r
in

th
e
U
R
L
�

Q
u
ery
d
a
ta
b
a
se
�i�e�
IN
S
P
E
C
�

M
E
D
L
IN
E
�
to
o
b
ta
in
th
e
p
rin
cip
a
l

a
u
th
o
rs
a
�
lia
tio
n
o
r
co
�a
u
th
o
rs�

In
stitu
tio
n
a
l
d
a
ta
b
a
se
su
p
p
lies

U
R
L
in
fo
rm
a
tio
n
fo
r
th
is

in
stitu
tio
n
�
H
o
m
ep
a
g
e
F
in
d
er

D
R
S
�S
y
stem
ca
n
su
p
p
ly
a
u
th
o
rs

p
erso
n
a
l
h
o
m
ep
a
g
es�

N
o
n
e

H
e
u
ristic
s

F
irst�
a
n
d
la
stn
a
m
e
a
p
p
ea
rin
g
in

th
e
fu
ll
tex
t�
th
e
title�
o
r
th
e
U
R
L

o
f
th
e
referen
ce�
A
n
a
ly
sis
ca
n

h
a
n
d
le
n
ick
n
a
m
es�
a
b
b
rev
ia
tio
n
s�

titles
�i�e�
M
r��
a
n
d
a
d
d
itio
n
a
l

	
rstn
a
m
es�

A
u
th
o
r
n
a
m
es
n
ea
r
title
strin
g
in

d
o
cu
m
en
t�
P
a
p
er
title
in
d
o
cu
m
en
t�

A
u
th
o
r
n
a
m
es�
p
u
b
lica
tio
n

k
ey
w
o
rd
s
�i�e�
�resea
rch
��

�p
u
b
lica
tio
n
��
in
U
R
L
p
a
th
�

K
ey
w
o
rd
s
clo
se
to
p
h
ra
se�
o
r
w
ith
in

p
a
ra
g
ra
p
h
�
�
jo
k
e�
w
o
rd
s
p
resen
t�

B
u
ck
e
tin
g

D
eg
rees
o
f
m
a
tch
in
g
fo
r
co
u
n
try

a
n
d
in
stitu
tio
n
�
a
s
w
ell
a
s
n
a
m
e

m
a
tch
a
n
d
�h
o
m
ep
a
g
en
ess��

D
eg
rees
o
f
m
a
tch
in
g
fo
r
th
e

in
stitu
tio
n
�
th
e
n
u
m
b
er
o
f
a
u
th
o
rs

fo
u
n
d
�
th
e
title
m
a
tch
�
th
e

p
rox
im
ity
o
f
title
a
n
d
a
u
th
o
rs
to
a

lin
k
�
a
n
d
th
e
ty
p
e
o
f
p
a
g
e
lin
k
ed
to

�P
S
�
P
D
F
�
H
T
M
L
fo
rm
a
t��

�
J
o
k
e�
w
o
rd
s
in
U
R
L
�
title�
tex
t�

p
h
ra
se
in
title
tex
t�
n
u
m
b
er
o
f

k
ey
w
o
rd
s
in
title
tex
t�
clo
sen
ess
o
f

k
ey
w
o
rd
s
a
n
d
p
h
ra
se�

L
e
a
rn
in
g

M
a
p
p
in
g
fro
m
g
iv
en
n
a
m
e
to
U
R
L
�

o
n
a
n
in
stitu
tio
n
p
er
in
stitu
tio
n

b
a
sis�

D
iscov
er
p
a
p
er
rep
o
sito
ries
o
n
a
n

in
stitu
tio
n
b
a
sis�
a
s
w
ell
a
s
fo
r

certa
in
a
rea
s�
o
r
o
n
a
p
er
a
u
th
o
r

b
a
sis�

J
o
k
e
rep
o
sito
ries�

p
h
ra
se�
k
ey
w
o
rd
s�to
�jo
k
e
m
a
p
p
in
g
s�

T
ab
le
����
Im
p
le
m
e
n
ta
tio
n
S
a
m
p
le
s
�c
o
n
tin
u
e
d
��
Im
p
lem
en
tation
s
for
th
e
th
ree
d
om
ain
ex
am
p
les
listed
h
ere
are
d
iscu
ssed
in

m
ore
d
etail
in
ch
ap
ter
�
an
d
��

��� Summary � Discussion ��

DRS�Systems and their key elements

DRS�Systems have six key elements " a base reference source� a cross �lter using
orthogonal information sources� heuristic �lters� buckets� and URL extractor and
generator � that fall into three main areas� Information gathering� �ltering� and
learning�

A DRS�System gathers information from standard Web indices �this forms the
base reference set�� which is augmented with additional data from orthogonal sources
�orthogonal reference set� that allow cross �ltering of irrelevant references�

Then it uses domain speci�c heuristics to asses a number of prede�ned features
for each element in the base reference set� sorting it into labeled buckets� with each
bucket representing a distinctive feature combination� The buckets are arranged in
an n�dimensional space� called a DRS Table� along the axes formed by the di�erent
features analyzed� By collating these buckets into zones of various degree of �quality��
a DRS�System is able to present the user with a very precise� labeled answer� always
returning the best available information and providing alternatives in case certain
information was not what the user was looking for�

Finally� a DRS�System is able to remember successful searches using a URL Ex�
tractor� which uses the query parameters� information from orthogonal information
sources and the URL of successful pages to generate general hypotheses that contain
placeholders for the variable parts of the address� In case a later search should fail�
the DRS�System can then use a URL Generator to create instantiated hypotheses
by replacing the placeholders in general hypotheses with current query parameter
and$or available orthogonal information�

DRS Set Characteristics

DRS�Systems are useful in domains that exhibit a large number of highly dynamic
member pages� which are at least partially indexed by standard Web search indices�
During any given search� a user is typically interested in a single element of this
set� Examples for suitable domains include personal homepages� academic papers�
product reviews and transportation schedules�

DRS Design Goals

Using a standard search service� a user can usually vary the granularity of her search
using keywords and other additional query syntax� It is this choice of query words and
terms that lead to the familiar tradeo� between coverage and accuracy� Formulating
the query overly restrictive �i�e� including a large number of keywords� and using
phrases and conjunctive clauses� will help retrieving only few irrelevant references�
but may also miss many of the relevant ones� Using too few restrictions �i�e� using
only a small number of keywords and allowing disjunctions� will have a higher chance
of including most� if not all of the relevant ones� but also cluttering the results with
countless irrelevant entries�

�� Dynamic Reference Sifters

Finding exactly the right combination of keywords and query terms that will
include all relevant references while excluding all irrelevant ones� is the pinnacle of
automated search� But instead of trying to vary these query parameters to achieve
optimal performance� DRS uses a more pragmatic approach� Starting with an overly
inclusive query� we �rst make sure that most� if not all of the relevant references
are retrieved� Then� sifting through all of the references one by one� we sort each
reference into buckets� containing references with identical features� Once all of the
references have been categorized this way� it is simply a matter of locating the bucket
that contains the most promising feature combination and presenting its content
to the user� together with a corresponding label describing the particular feature
combination�
This strategy ensures the three major design goals� The comprehensive reference

set ensures high recall� the domain speci�c labeling and sorting methods allow high
precision� and the �exible sorting scheme allows for graceful degradation� making sure
that the maximal relevant information is always presented�
O�ering both high precision and high recall is a good example for a technique

where the total is more than the sum of its single parts� Not only is the user pre�
sented with fewer references �high precision� more often �high recall�� she also saves
a tremendous amount of time once such a technique fails to �nd a reference� Given
the premises� the user can have a high con�dence that the desired information is
indeed not on the Web� leaving time to plan the next step� instead of spending more
and more time establishing the non�existence of this information� Furthermore� by
displaying additional information even if the main piece of information could not
be found� a DRS�System can also add explicit value to a failed search� providing
important clues for the users further actions���

��e�g�� contacting the author of a un	ndable paper� using the displayed email address�

� Ahoy� The Homepage Finder	 A

case study in the homepage domain

This chapter describes our DRS case study in the personal homepage domain� called
Ahoy� The Homepage Finder� Ahoy� is a fully implementedWeb service that is publicly
accessible since May �		� and has handled over half a million queries since�
Building upon our discussion of the general DRS framework in the previous chap�

ter� we will introduce our domain speci�c implementation in � steps� First� we will
describe the domain this particular DRS�System is operating in� Then we will pro�
ceed with the historical development and module overview of the system� where we
present the implementation of the three main components of a DRS�System � In�
formation Sources� Analysis � Classi�cation� and Learning � as well as the Input �
Output of the system� and discuss implementational aspects and performance issues�
Finally� we will report the results of our experiments� which compare the accuracy
and coverage of Ahoy� with four popular Web search services� and examine the e�ect
of three di�erent statistical measurements on Ahoy��s learning module�

��� Finding personal homepages on the Web

Before we set out to give a description of our domain speci�c implementation� we
will have to describe the domain it is operating in� We will �rst describe the concept
of a personal homepage� and then brie�y summarize how the three search methods
described in section ��� � Web directories� Web indices� and manual search � can be
used to �nd pages in this particular domain�

����� Domain description

The initial concept of a homepage was that of a personal gateway� to the Web� The
�rst browser� applications� which allowed a person to explore the web of intercon�
nected pages with a simple click of a mouse �i�e�� to browse the Web� o�ered the
installation of a home page�� a hypertext� document that would be the very �rst
document displayed after the application was started �NCS	
��
Today� many di�erent types of homepages have begun to supersede this initial

de�nition� However� the concept of a gateway� remains the same� Business home�

�Any text that contains links to other documents� See the glossary in appendix A or �NCS����

�� Ahoy� The Homepage Finder

pages provide links to press releases and product descriptions� University and De�
partmental homepages o�er degree information and course lists� Class homepages
cover additional reading material and past midterms� while Project homepages list
publications and experimental results�
Maybe the most popular type of hompage is that of a personal homepage� Per�

sonal homepages o�er starting points to explore a person�s work� hobbies� friends and
family� With the sharp rise in the number of commercial Internet Access Providers�
personal homepages are not only for researchers and college students anymore� thou�
sands of individuals use it to promote their private business� exchange favorite recipes
or put up pictures of latest vacation for friends and family� O�ering a search service
that would reliably �nd speci�c pages of this category would provide an immediate
bene�t to a large number of users� addressing our initial goal of building truly useful
systems�

����� Current Methods

This section describes the three most commonly used methods for �nding personal
homepages� Each method uses one of the search strategies described in section ����
and we will specify brie�y how they can be used in the personal homepage domain�

Web Directories

Some Web directories such as Yahoo� have attempted to create directories of home�
pages by relying on users to register their own pages� As of June �		
� Yahoo�
contains about
������ personal homepages� It is di�cult to say how many personal
homepages are on the Web� but it is clear that Yahoo��s list represents only a small
fraction of the total� For example� it contains only between one and ten percent of
the homepage samples used to test Ahoy�� and less than two percent of the roughly
������ personal homepages created by Netcom subscribers �SLE	
�� The result is
that for the majority of all searches� looking up a personal homepage in a directory
will result in a No entries found� message�

Web Indices

Many general�purpose indices like AltaVista and HotBot make query syntax available
that is tuned to �nd people� This approach to �nding personal homepages avoids
the problems of manually creating a list� but the output of such searches frequently
contains an inconveniently large number of references� For example� searching Al�
taVista for a person named Oren Etzioni using the �advanced� query �Oren NEAR
Etzioni� returns about ��� references� A similar search using HotBot�s specialized
People Search� produces over
�� matches� A separate problem is that many users
do not bother to learn such specialized query syntax and thus conduct an even less
precise search�

�See http���www�yahoo�com�Entertainment�People��

��� Finding personal homepages on the Web �	

Figure ���� Ahoy� Search Form� The user is asked for the �rst� and lastname of the
person she is looking for� Additionally� the institution this person is a�liated
with� as well as any �partial� email and country information available can be
entered� The latter �elds are optional and help Ahoy� increase its accuracy� but
without limiting its coverage�

Manual Search

Knowing enough about a person� one could �nd his or her homepage by �rst �nding
the Web site of the person�s institution� then possibly searching down to the person�s
department� and �nally locating a list or index of homepages for people at that site�
Unfortunately� this method can be slow� If� for example� one were looking for a
biologist named Peter Underhill at Stanford University� several minutes might be
spent looking through Web pages of dozens of departments that might reasonably
employ a biologist�

����� Using Dynamic Reference Sifters

The Ahoy� softbot represents a fourth way of searching for personal homepages� A
snapshot of the Ahoy� search form is shown in �gure ���� The user enters the �rstname
and the lastname of the person she is looking for� and additionally the institution
the person is a�liated with �i�e�� which is most probably storing the homepage��
Also� the search from provides �elds for the email address and the desired country

�� Ahoy� The Homepage Finder

Figure ���� Ahoy� Status Report� Addressing the design goal of reactivity� Ahoy� provides
a detailed status report during its search� even allowing the user to directly use
any preliminary results by following a hyperlink without waiting for the �nal
results�

of the person� Giving additional information to Ahoy� does increase its accuracy�
but without limiting its coverage� Standard search engines often fall prey to over
restrictive searches when too much� or accidentally wrong information is given�

After submitting the query� the user is presented with a detailed status report� �see
�gure ���� which already contains preliminary information about possible homepage
candidates� This way� an impatient user� who recognizes the brief reference as it
comes in� can immediately follow the link without waiting for Ahoy� to �nish its
search�

Finally� the answer� along with a brief search summary� is presented on a single
page �see �gure ����a��� typically featuring less than � references� in most cases only
one or two� Additional information like the institutional homepage or the email
address of the person search for is given� in case none of the returned references turn
out to belong to the right person� Also� in case Ahoy� could not establish su�cient
con�dence in the references to declare it an unambiguous success� it will try to
present the best possible answer� along with a number of alternatives� as shown in
�gure ����b��

��� Finding personal homepages on the Web ��

�a
�
S
u
cc
es
s

�b
�
F
a
il
u
re

F
ig
u
re
��
��
A
h
o
y
�

R
e
su
lt
s�
In
ca
se
A
h
o
y�
co
u
ld
u
n
am
b
ig
u
ou
sl
y
�
n
d
re
le
va
n
t
re
fe
re
n
ce
s�
it
d
is
p
la
y
s
th
os
e
to
ge
th
er
w
it
h
a
b
ri
ef

d
es
cr
ip
ti
on
an
d
an
y
ad
d
it
io
n
al
in
fo
rm
at
io
n
�e
m
ai
l
ad
d
re
ss
es
�
in
st
it
u
ti
on
al
h
om
ep
ag
es
�
av
ai
la
b
le
�a
��
If
on
ly
a
su
b
op
ti
m
al

re
su
lt
co
u
ld
b
e
fo
u
n
d
�
A
h
o
y�
�s
gr
a
ce
fu
l
d
eg
ra
d
a
ti
o
n
m
ec
h
an
is
m
al
lo
w
s
it
to
la
b
el
th
e
p
re
se
n
te
d
re
fe
re
n
ce
s
as
su
ch
�
an
d
o�
er

p
oi
n
te
r
to
p
os
si
b
ly
re
la
te
d
re
fe
re
n
ce
s
in
ot
h
er
ca
te
go
ri
es
�

�� Ahoy� The Homepage Finder

With its novel approach� the Ahoy� softbot combines the advantage of manually
created Web directories � their relevance and reliability � with the advantage of
general�purpose Web indices like AltaVista� their enormous pool of indexed pages�
In fact� due to the URL generator� Ahoy� is able to �nd and return homepages that are
not listed in any search index� Finally� Ahoy� provides the advantage of speed� when
it returns a negative result �i�e�� it reports that it cannot �nd a given homepage�� it
saves its users from scanning through tens or hundreds of falsely relevant� references
returned by a general�purpose search engine� Last not least� Ahoy� returns its results
much faster than a manual search would�

The next section will examine the Ahoy� architecture and implementation in more
detail� describing more closely its control �ow and module structure�

��� The Ahoy� Web Service

We will begin this section with a short history of the Ahoy� project� and how it lead to
the design of a DRS� Several early architectures will be presented and their problems
discussed� We then go on to give an overview of Ahoy�s current module structure�
and describe the �ow of control for a number of common situations�

Our three DRS areas introduced in section ��� � information sources� �ltering
�analysis and classi�cation�� and learning � will provide the structure for our de�
scription of the Ahoy� modules� with two extra sections concerning Ahoy��s input and
output operations�

����� History and Overview

Early implementations

The Ahoy� softbot project started in summer of �		�� in response to a challenge posed
by UW Computer Science Departments chairman Ed Lazowska� Building a softbot
to �nd personal homepages� The author joined graduate student Jonathan Shakes
and professor Oren Etzioni in September after a number of approaches had been
discussed� as outlined in table ����

The most promising approach this far had been the best��rst search� Given the
name� institution and departmental a�liation of a person� an early prototype would
follow the following four steps�

�� Look up institutional homepage in existing list and download it�

�� Find link that leads to departmental homepage and download it�

�� Find link that leads to homepage list page and download it�

�� Find link that leads to personal homepage and show it to user�

��� The Ahoy� Web Service ��

Approach Description Problems

Centralized
database

User�created

Users register their homepage
manually

How to achieve initial size to make
service attractive
 How to ensure
accuracy of the database
 How to

prevent bogus entries

Centralized
database

Spider�created

Use specialized Web�Crawler which
indexes only homepage

How to achieve large enough
coverage
 How to unambiguously
decide if a page is a homepage

Centralized
database

Assembling smaller

databases

Periodically copy existing
homepage databases and assemble

into centralized database

Often impossible to download all
existing entries� unless special

arrangement with local maintainer�
Labour intensive to add new

services� Bandwidth consuming to
update entries�

Guess correct
URL

Use institution name to �guess�
institution�s URL and homepage
path until correct one is found�
using previously learned patterns�

Bandwidth � time consuming�

Best��rst search
Use institutional URL as root of a
search tree� then perform heuristic

best�	rst search�

Hard to code universal evaluation
functions that chooses next link to
explore� Time consuming� Depends
strongly on initial guess about
correct institution to search�

Specialized query
to standard Web

indices

Create specialized query to
standard Web indices�

Easy to over� or underconstrain
query �i�e�� too few or too many
results�� Multiple iterations of
query string ��tuning�� takes long

time�

Specialized
Meta�Search

Compile list of directories or indices
that specialize in people �i�e��
people at a certain institutions or
working in a certain 	eld�� On
basis of input information� choose

correct sources to query�

Tedious to compile and maintain
list� Needs large number of

specialized �wrapper� that decode
responses of each information
source �makes maintenance even

harder��

Table ���� Initial Architectural Approaches for a Homepage Finder Before develop�
ing the general DRS�framework described in chapter �� a number of approaches
had been tried to create a homepage �nder�

	 Ahoy� The Homepage Finder

At any point� the system would keep track of the links seen so far� including their
likelihoods for leading to a speci�c page type searched for by the program � depart�
mental homepages� list pages� and personal homepages� Performing a depth��rst
search� it would analyze each link and its surrounding text� asses likelihoods for the
three page types� and follow them in the order of highest probability� Depending
on the state of the system �i�e�� trying to �nd the departmental page� the list page�
or the homepage itself�� it would use one of the three values as the rank indicator�
In case all values on a current page were worse than any other values encountered
before� the system would backtrack to the best seen link so far and keep exploring
from there on�

Although the system showed a surprisingly well initial performance� its limitations
soon became obvious� when it should be expanded to handle arbitrary homepages�
The initial prototype had specialized in �nding personal homepages of computer
science professor at North American universities� and already for the next small
improvement � �nding professors at North American universities in general � creat�
ing the necessary heuristic �lter to asses the likelihood values became increasingly
di�cult� How was the system to �nd the departmental homepage of the botany de�
partment% Was it to look straight for botany�� or should it look under biology�
�rst% And what if all these disciplines where grouped under the natural sciences�
pages% Soon� the need for a general hierarchy of departments became obvious�

Also� with the introduction of a wider range of possibilities to explore �instead
being focused on computer science departments�� the chance for following irrelevant
links increased rapidly� The more often the system had to backtrack in situations
like these� the more time it took to �nd the page�

While this initial approach had been highly motivated by user studies� who would
�nd homepages in the very same way �i�e�� �nding the persons institutional homepage�
and the searching from there�� the vast general knowledge used by people during these
searches was crucial to the success of the system��

Our research focused then on a less knowledge intensive task� which was never�
theless also motivated by user studies� While expert� users would seem to prefer our
�rst methods� many occasional users reported simply issuing a query for the persons
name to a popular search engine that supported keyword searches� and then looking
through the returned references one by one until the desired page was found�

The work on this second prototype� together with parts of some of the initial
approaches shown in table ����� �nally led to the general design of Dynamic Refer�
ence Sifters� inspired by user�s manual and often laborious sifting through tens and
hundreds of references�

��� The Ahoy� Web Service 	�

Metacrawler

Email Directories

Institutional DB

URL Generator

URL Extractor

Hypotheses

Session Directories

D
is

pl
ay

 M
an

ag
er Script

Analyzer

M
ul

tip
le

xe
r

Main Control

Table Manager

Session Manager

MC Mgr.

Email Mgr.

Inst. Mgr.

URL Learner

DB Manager

Q
ue

ry
 M

an
ag

er

Figure ���� Ahoy� Module Overview More than a dozen main modules compromise the
Ahoy� System� Query and Display modules handle input and output � MC� Email
and Institution modules query and parse Ahoy��s information sources� the Ana�
lyzer and Table modules handle Analysis � Classi�cation� and URL Generator

and Extractor provide Ahoy��s Learning capabilities�

Module overview � Control Flow

Figure ��� shows the architectural overview of the parts that compromise the Ahoy� sys�
tem� Ahoy��s main modules can be divided into the three areas of a DRS�System�
Information Sources� Filtering� and Learning� In addition� the Ahoy� system contains
modules for reading a user query �input� and giving back a response �output�� Table
��� lists each of these areas with its corresponding modules�

The �ow of control in Ahoy� is similar to the general DRS mechanism �rst shown
in �gure ���� After parsing the users request� Ahoy� issues an appropriate query to the
MetaCrawler� as well as to each of its supporting email services �WhoWhere� Internet
Address Finder and BigFoot�� Together with information from its internal institutional
database� the returned references are then �ltered and classi�ed as described for
the general DRS�System in section ������ Depending on the results� any relevant
references are shown to the user �after Ahoy� extracted any new general hypotheses
from them�� or it uses its database of previously acquired patterns to generate a list
of instantiated hypotheses that will then be tried directly�

The following sections will brie�y describe each module in the order shown in
table ���� Most modules represent a single object that will be created and used

�See chapter � for a brief description of the WebFinder system� which uses a very similar approach�
and a discussion of its performance�

�Speci	cally� the �Guess correct URL� approach led to the concept of URL Generator and Extractor�
while the �Specialized query to standard Web indices� approach provides the base reference set�

	� Ahoy� The Homepage Finder

�� Input
Query Manager
Session Manager

	� Information Sources
MC Manager
Email Manager
Inst DB Manager

� Filtering
Analyzer
Table Manager

�� Output
Display Manager

�� Learning
URL Learner
URL Extractor
URL Generator

� Miscellaneous
Main control script
Multiplexer
DB Manager

Table ���� Ahoy� Modules by Category� Ahoy��s main modules can be divided into �
areas� input� output� information sources� �ltering� and learning� In addition
to the modules shown here� Ahoy� has a number of auxiliary modules which are
listed in appendix B����

in the Main control script� although others might simply provide functions or more
complex data types� A number of smaller program parts not shown in �gure ��� are
also brie�y described in the appendix�

����� Ahoy� Input
 Searches and sessions

This section gives an overview about Ahoy��s frontend� The query decoding module
and the persistent session management�

Query decoding

The Query Manager enables Ahoy� to decode requests coming from a users browser
when the Ahoy� script is called by the local Web server� Ahoy� knows the following
�ve �elds�

firstname The �rst names of the person
lastname The last name of the person
instname The name of the institutional a�liation
country The country of the institution
email Email address of the person �or parts of it�

Before o�ering the values of these �elds to the rest of the system� the query
module �rst asserts that the user entered su�cient information to provide an answer�
Ahoy� knows � di�erent modes of operation� which are set by the query module
according to the �elds the user �lled out�

��� The Ahoy� Web Service 	�

�� Name�only search� firstname and lastname given� but no institutional
information� Ahoy� tries to �nd a homepage at any institution��

�� Institution�only search� User speci�ed instname only� without giving ei�
ther firstname or lastname� Ahoy� simply tries to locate the corresponding
institutional homepage in its database without querying any external sources�

�� Name � institution search� firstname� lastname and instname given��

In this mode� Ahoy� will try to locate a relevant page at the correct institution�

After decoding the information from the user and determining the mode of oper�
ation� the query module returns control to the Main control script� where either an
error message is displayed �in case of invalid �elds��� or execution continues with the
creation of a Session Manager object�

Session creation

Each search with Ahoy� is called a session�� Every input to the main search form
will always start a new session� even if exactly the same information has been entered
before� Only searches that use Ahoy��s URL Generator �after an initial search using
the base reference set has failed� will continue an existing session�
Each session uses a private directory� where session dependent �les are stored�

The list of �les per session include the original output of the base reference set� the
MetaCrawler �for later inspection by the user�� result and alternatives pages� status
pages� and email information pages �see table �����

File Description
results�html Results page shown to user
status�html Copy of status report� for reference
alt ��html Alternative results� if any
previous�html Previous results in case of a continued search
email�html Separate email page� if more than � addresses found
session�data Statistical information
url�data Information about URLs followed

Table ���� Contents of Ahoy� Session Directory

In order to be able to continue a session after an answer has been sent to the user�
Ahoy� encodes a unique session identi�er in the results page� Once the user submits
a request to continue this search �in case it failed before and Ahoy� has at least one

�If any country information is given� Ahoy� will 	rst try to restrict its search for domains in this
country only�

�Alternatively any institutional information from the email 	eld will be used� if available�
�Currently Ahoy� does not handle initials for either 	rst� or lastname� nor does it allow searches
for 	rstnames or lastnames only�

	� Ahoy� The Homepage Finder

general hypothesis to locate the page directly�� this session identi�er is sent back to
Ahoy� and can be used to look up the current state of this particular search in the
corresponding session directory�

����� Information Sources

Each of the three information sources manager� MC Manager� Email Manager and Inst
Manager� provides the Main control script with an appropriate query string to the
source �given the current user request�� as well as containing methods to decode the
information that is sent back from each source�

The Main control script simply submits each query string to the Multiplexer mod�
ule� which allows the parallel connection to a number of remote and local sources
�see section ����
�� and then translates the incoming results into Ahoy��s internal data
structures using each managers decoding methods�

The MetaCrawler� The base reference set

To achieve a large base reference set� the Ahoy� query to the MetaCrawler simply
submits the �rst� and lastname of the person� In addition� it speci�es the as a
person� switch� which instructs the MetaCrawler to use this feature with all search
services that support it�

Depending on net tra�c and timeout values� the MetaCrawler usually returns
between �� and ��� references� which are immediately converted into Ahoy��s inter�
nal reference format� analyzed and sorted into a DRS�table �as soon as su�cient
information from orthogonal sources is available��

Orthogonal information� The Institutional Database

The institutional database consists of a local copy of the Yahoo� index for com�
panies� universities� as well as governmental and military sites� Using the freely
available glimpse package�	 the Institution Manager allows keyword searching on the
entries consisting of the institution name� its principal URL� as well as any optional
nicknames� such as UW� for the University of Washington�

Instead of providing a single query string� the Institution Manager returns a list
of queries to this index� arranged in descending degree of restrictiveness� First� an
exact match for the information entered in the instname �eld is tried� which is then
gradually loosened �i�e�� allowing di�erent word order� spelling mistakes� etc�� until
at least a single match could be found�

�Glimpse �which stands for GLobal IMPlicit SEarch� is an indexing and query system that allows
searching through a large number of local 	les very quickly� See the glimpse home pages in
http���glimpse�cs�arizona�edu��

	These nicknames currently need to be entered manually�

��� The Ahoy� Web Service 		

Once a list of matches is available� the Institution Manager uses �ltering methods
to �nd the best match in a possibly large list of candidates��� Filtering constraints
include the correct country of the institution� as well as a metric for the closeness of
the institution name and its nickname�

Orthogonal information� Email Directories

Ahoy� uses information from the three largest email directories available� Bigfoot
�Big	
���� Internet Address Finder �Dou	
�� and WhoWhere �Who	
��
The queries to each email service are similar to those to the MetaCrawler� simply

stating �rst� and lastname of the person� After the decoding method has extracted
all available email references in the output of the services� the Main control script
tries to unify this list of possible email addresses with the list of institutions obtain
by the Institution Manager� This step is described in the next section�

Cross ltering of orthogonal information

Before analyzing the references returned from theMetaCrawler� theMain control script
tries to determine the correct� institution� based on the information obtained from
both the Institution Manager and the Email Manager�

Ahoy� tries to synchronize� these two sources by �nding overlaps between email
addresses and institution URLs� keeping only those emails and institutions that have
the highest possible overlap� An example is given in �gure ���� The overlap is later
used during �ltering to decide if references from the MetaCrawler are at the correct
institution �see section �������

����� Filtering
 Heuristic Analysis � Classi�cation

Ahoy��s �ltering is done by the Analyzer module and Table Manager� The Analyzer
computes the relevant features from each reference� while the Table Manager imple�
ments a DRS�Table with the appropriate axes and zones�

Feature detection� The Analyzer

A Web document usually features a number of common characteristics� which are
used by the Ahoy� system to determine whether a particular reference constitutes a
personal homepage for the desired person�
The following three features are examined in order to characterize a reference as

being a personal homepage for a certain individual�

�� Ownership� The degree of match between firstname and lastname �as spec�
i�ed by the user� and any personal name featured prominently in the reference�

�
Once the 	rst queries using exact matches have failed� a relaxed query allowing for example single
spelling mistakes can easily return several hundred matches�

��Bigfoot was recently substituted for the much larger OKRA service �DoCS���� a student operated
project at the University of California at Riverside� as the latter one had to be shut down due
to lack of support �the ultimate fate of Ahoy� �
��

	� Ahoy� The Homepage Finder

Code Name Description
M with the right

name
In title� full match of name �all user speci�ed parts
found�� In URL� found possible login name �as inferred
from emails� at correct position�

P with a similar
name

Some user speci�ed parts �i�e�� second �rstnames� could
not be found� but at least one �rst and lastname was
found�

S with a similar
sounding name

Ahoy� uses the Soundex algorithm �Knu
�� to match last�
names in spite of spelling mistakes �although this algo�
rithm only works with English names�� This is only
useful if the MetaCrawler found a reference even though
the user misspelled the name� which is only likely with
very unique name combinations�

L with the same
lastname

Found only the �correct� lastname� but no �rstname� If
also a non�matching �rstname is found� see class U�

R with a similar
sounding
lastname

Same as class L� but using the Soundex algorithm for
matching the lastname�

A with a possible
login name

Found a generic� login name �i�e�� generated from �rst�
and lastnames combinations� in URL �not used in title
analysis��

F with the same
�rstname

Found only one or more correct �rstnames� but no last�
name� If also a non�matching lastname is found� see
class W�

E without the
name

Could not �nd any part of the speci�ed name in title or
URL� This does not necessarily mean that there is no
name at all� only that no part of the desired name could
be found�

U undecided This is the fall�back code� whenever none of the other
cases could be found�

D with a di�erent
�rstname

Found correct lastname� but preceded with a non�
matching �rstname�

W with a wrong
lastname

Found one or more correct �rstnames� but also a non�
matching lastname�

Table ���� Ahoy� Analyzer� Ownership codes� Ahoy� uses a list of �� ownership codes
to categorize a given reference as bearing the name of the right person�

��� The Ahoy� Web Service 	�

Email Manager

Searching for
Marc Langheinrich

Searching for
UW

Inst. Manager

marclang@saxifrage.cs.washington.edu

http://www.cs.washington.edu/

Searching for: Marc Langheinrich at UW

http://www.uwsa.edu/

http://www.uwisc.edu/

http://www.www.uwaterloo.ca/

http://www.washington.edu/

mac@ub.uni-bielefeld.de

marclang@u.washington.edu
imlanghe@techfak.uni-bielefeld.de

marclang@saxifrage.cs.washington.edu

http://www.cs.washington.edu/

http://www.stat.washington.edu/

...

Greatest overlap:

Cross Filter

cs.washington.edu

Figure ���� Ahoy� Cross Filtering� By �nding the largest overlap between institutional
URLs and email addresses� the cross �lter in the Main control module uni�es
email and institutional information� Overlaps are later used to determine the
�correct� institution of the base references from the MetaCrawler�

Ahoy� uses both title and URL information to compute this feature� Ten possi�
ble values �M�P�S�L�F�R�E�U�D�W� can be obtained analyzing the title of the refer�
ence� three possible values are computed �M�A�E� from the URL �see table �����
The �nal value that is reported for this feature is simply the better of the two
individually obtained codes�

�� Location� Ahoy� determines a three�digit binary value regarding the Location
of the reference� indicating the correct country� zone �if applicable� and site�
name of its URL��� In case the user did not specify an institution� the value
for the sitename is always zero� See table ����

�� Type� Ahoy� analyzes both the title and the URL in order to determine whether
a reference is indeed a homepage �independent from belonging to the right
person or being at the correct institution��

��See �BL��� for a description of the various parts of a URL�

	� Ahoy� The Homepage Finder

Code Description

��� at the right institution
�� in the wrong country
�� in the wrong zone
� at a similar named institution
�� in the right zone and country
� in the right zone
� in the right country
 in a di�erent country

Table ���� Ahoy� Analyzer� Location Codes� The �rst four codes� ������� are only
used if the user speci�ed institutional information�

Code Description

� explicitly labeled homepage
� name only in title �common for personal homepages�
� URL in homepage format
� list page �e�g�� faculty lists� student directories� etc�
� undecided
 explicitly labeled as non�homepage

Table ���� Ahoy� Analyzer� Page type codes� Ahoy� di�erentiates between � types of
pages� Codes � through � are considered being a homepage� while pages with
codes � through � are only displayed in case of failure as alternatives�

First� it tries to �nd a domain speci�c indicator� such as home page� or per�
sonal page�� or even negative indicators like publications� or resume�� in
the page title� In either case it assigns an unambiguous maximum �value �� or
minimum �value � value to its internal �type� scale �see table ����� It also has a
special list page� type �value �� that is triggered by strings like directory� or
list�� If it fails to �nd any of these strings� it will try to establish if the name
of the person forms the complete title � a form very common among personal
homepages �value ���

If none of the above cases matches� Ahoy� analyzes the URL in order to �nd
additional indicators for the reference being a homepage� For example� many
homepages don�t have an explicit �lename in their URL� or use the default
�lenames index�html or welcome�html� If this analysis also fails to �nd a
path pattern common to personal homepages �value �� in the URL� the page
type is left open �value ���

This analysis is done as soon as information becomes available� even if only parts
of the three values� ownership� location and type� can be established� As soon as all
three values has been assessed� each reference is sorted into an appropriate bucket

��� The Ahoy� Web Service 	�

and placed in the DRS�Table� as described in the next section�

Bucketing� the Table Manager

Once we have established all three value for each returned reference in the base set�
Ahoy� can sort the references into its buckets� which will allow it to dynamically �nd
the most promising reference along these three features�
Each bucket in Ahoy� is uniquely identi�ed by three values� page type� ownership

and location� An example for a bucket label would be� Homepage with the correct
name at the right institution�� corresponding to a feature combination M����������

Figure ��� shows a picture of Ahoy��s table� with each of the three features forming
an axis in a three dimensional space� and each axis ranging over all possible values
of the respective feature�
In order to decide which references to display� the Table Manager provides methods

for selecting the best� available bucket in the most promising zone� As described in
section ������ zones provide a way to arrange the available buckets in a table into a
small number of groups featuring similar characteristics�
Zones in Ahoy� are de�ned by only two axes� ownership and location� The third

axis� page type� is used only as a preference function for buckets with otherwise iden�
tical features� Ahoy� uses a list of eight zones to group possible general outcomes
of the search� Table ��
 shows all existing con�gurations� consisting of a short de�
scription� one of three statuses �success� partial success or failure�� ownership and
location range� and alternatives� As mentioned before� the page type is not directly
used in zone selection� but only during the �nal display of the references� Please refer
to tables ��� �page ��� and ��� �page ��� for the ownership and location codes used
in the table�
Figure ��
�a� shows the layout of these eight zones in the DRS�table� If no insti�

tutional information is available� a reduced table is used �as shown in �gure ��
�b���
featuring only zones ��� and ��
After all references have been analyzed and sorted into corresponding buckets�

the Table Manager simply checks zone by zone to see if at least one of their buckets
is �lled� If so� it will take the best bucket within this zone �i�e�� the one closest
to the center� and return its content to the Main Control Script� together with an
appropriate description depending on the zone� the bucket� and the page type of the
reference �See the Description �eld in table ��
�� Using the Display Manager� this
information can then be returned to the user�

����	 Ahoy� Output
 The Display Manager

Ahoy��s Display Manager provides methods and functions to the rest of the system
that allow each module to return customized message to the user� Depending on

��Due to the historic development of these features� the page type feature is actually not a separate
axis� Instead� all references assigned to a particular bucket are automatically kept in an ordered
list� according to their page type value� However� this implementation detail can be directly
translated into the framework described above�

� Ahoy� The Homepage Finder

D
e
scrip
tio
n

S
ta
tu
s

O
w
n
e
rsh
ip

L
o
ca
tio
n

A
lte
rn
a
tiv
e
s

	
�

P
a
g
e
s
b
e
a
rin
g
th
e
rig
h
t
n
a
m
e
�a
t

th
e
g
iv
e
n
in
stitu
tio
n
�

S
u
ccess

M
�
P
�
S

����
����
����

���

���
��

�

P
a
g
e
s
b
e
a
rin
g
th
e
la
stn
a
m
e
�a
t

th
e
g
iv
e
n
in
stitu
tio
n
�

P
artial
S
u
ccess

L
�
R

����
����
����

���

��
�

�
�

P
a
g
e
s
b
e
a
rin
g
th
e
�
rstn
a
m
e
�a
t

th
e
g
iv
e
n
in
stitu
tio
n
�

P
artial
S
u
ccess

F
�
A

����
����
����

���

��
�

�
�

P
a
g
e
s
b
e
a
rin
g
th
e
rig
h
t
n
a
m
e
a
t

a
n
o
th
e
r
in
stitu
tio
n

P
artial
S
u
ccess

M
�
P
�
S

����
����
����

���

��

�

P
a
g
e
s
w
ith
o
u
t
a
n
a
m
e
a
t
th
e

co
rre
ct
in
stitu
tio
n

F
ailu
re

E

����
����
����

���

��

�
�

P
a
g
e
s
b
e
a
rin
g
co
rre
ct
la
st
o
r

�
rstn
a
m
e
a
t
a
n
o
th
e
r
in
stitu
tio
n

F
ailu
re

L
�
R
�
F

����
����
����

���

�

�
�

P
a
g
e
s
b
e
a
rin
g
a
n
o
th
e
r
n
a
m
e
a
t

th
e
g
iv
e
n
in
stitu
tio
n

F
ailu
re

U
�
D
�
W

����
����
����

���

�

�
�

P
a
g
e
s
w
ith
n
o
a
p
p
a
re
n
t

co
n
n
e
ctio
n
to
y
o
u
r
se
a
rch

F
ailu
re

E
�
U
�
D
�
W

����
����
����

���

�

T
ab
le
���
A
h
o
y
�
Z
o
n
e
s�
U
sin
g
a
list
of
eigh
t
zon
es�
w
h
ich
are
d
e�
n
ed
b
y
on
ly
tw
o
ax
es�
O
w
n
ersh
ip
an
d
L
oca
tio
n
�
A
h
oy�
selects
th
e

b
est
referen
ces
to
d
isp
lay
as
th
e
search
resu
lt�
T
h
e
th
ird
ax
is�
pa
ge
ty
pe�
is
u
sed
on
ly
as
a
p
referen
ce
fu
n
ction
for
b
u
ckets

w
ith
oth
erw
ise
id
en
tical
featu
res�
Z
on
es
�
�
�
h
ave
d
i�
eren
t
d
escrip
tion
s
d
ep
en
d
in
g
on
availab
le
in
stitu
tion
al
in
form
ation
�

S
ee
also
�
gu
re
���

��� The Ahoy� Web Service ��

with a homepage-URL

Lastname only
at the correct institution and country

Bucket L-101-3K

5

4

3

2

1

0

111
110

101
100

010
001

000

011

M
P

S
L

R
A

F
E

U
D

W

location

ownership

pa
ge

ty
pe

Figure ���� Ahoy� Table� The three analyzed features � ownership� location and page
type � form the axes of a three dimensional space� A sample bucket� KL�������
is shown� containing references featuring �the lastname only� at the correct
institution in the correct country� with the URL indicating a homepage��

the user�s Web Browser� the Display Manager will allow �for Netscape browsers� or
suppress �all other browsers� intermediate output that is used to update the user
regarding the progress of the search �i�e�� Ahoy��s reactivity feature�� It also handles
any overhead resulting from the HTTP protocol�� for starting or ending a dynamic
Web response properly�

���� Learning

Learning in Ahoy� follows the scheme described in section ������ Successful searches
are used to create general hypotheses by extracting patterns from the URLs of the top
references� while unsuccessful searches lead to the generation of instantiated hypothe�
ses� which are then tried directly in order to �nd the desired page� Three modules
provide Ahoy� with its learning capabilities� the URL Extractor acquires new general
hypotheses by extracting patterns from successful URLs� while the URL Generator

��The HyperText Transfer Protocol is the communication protocol of Web based services�

�� Ahoy� The Homepage Finder

5

4

3

2

1

0

111
110

101
100

010
001

000

011

M
P

S
L

R
A

F
E

U
D

W

location

pa
ge

ty
pe

ownership

5

6

8
2

3

7

4

1

�a� institutional information available

ownership

2

3

1
5

011

001
000

M
P

S
L

R
A

F
E

U
D

W

010

8

location

pa
ge

ty
pe

1

0

4

3

2

�b� no institutional information

Figure ��� Ahoy� Zones� The eight available zones divide the DRS�table as indicated in
�gure �a�� In case no institutional information could be obtained� a collapsed
table shown in �gure �b� is used� featuring only four of the zones� ��� and 	�

generates instantiated hypotheses from previously extracted patterns using current
query parameters� Both modules are controlled by the URL Learner module� which
provides a high level access to Ahoy��s directed search capabilities for the Main Con

trol Script� as well as evaluating existing general hypotheses by recording success of
failure of the according instantiated hypotheses�

Hypothesis Acquisition� the URL Extractor

The URL Extractor module allows the URL Learner module to map successful URLs to
a number of corresponding general hypotheses� A given URL is searched for a �query
dependent� list of strings that can be replaced with general placeholders���

Table ��� shows a list of currently implemented placeholders in Ahoy�� although
more mappings can be added at any time� The unknown placeholder ��� is used
whenever domain speci�c heuristics found indicators of a user speci�c URL part� but
failed to �nd an appropriate mapping from a given query parameter or orthogonal
information� For example� when looking for Erik Selberg� and �nding his homepage
at http���www�cs�washington�edu��speed�� domain heuristics would indicate that
speed� is indeed the user speci�c part in the URL �using the tilde � as an indicator��
but none of the standard mappings would allow it to substitute the word speed��
In this case� the extraction method creates an hypothesis containing the unknown
placeholder�� http���www�cs�washington�edu������

��See 	gure ��� on page ���

��� The Ahoy� Web Service ��

Code Description Example

L Lastname smith

F Firstname john	 peter

fL� Firstname initial� �lled up with up to
seven letters of lastname

jsmith	 psmith

F�l Firstname� up to seven letters� followed by
lastname initial

johnsmit	 petersmi

ffl All available �rstname initials� followed by
lastname initial

jps

U Email user�name smith��	 jsmith

Unknown mapping

Table ���� Ahoy� Placeholders� Six �known� and one �unknown� placeholder are used
in Ahoy��s URL Extractor to form general hypotheses from successful URLs� The
examples in the rightmost column assume a query for �John Peter Smith� and
�nding two email addresses with user�names smith
� and jsmith�

Generating new URLs� the URL Generator

The URL Generator module allows the URL Learner to reuse general hypotheses that
were acquired during previous� successful searches� by re�instantiating the general
placeholders in such a hypothesis with actual value from the current� unsuccessful
search���

When encountering an unknown placeholder ��� in a hypothesis� the URL Gen

erator will use all available placeholders� as if it encountered the same hypothesis
multiple times� each with a di�erent placeholder� With multiple unknown placehold�
ers in a single hypothesis� this could easily lead to a very large number of instantiated
hypotheses� In order to prevent this� the current version of Ahoy� will treat all un�
known placeholders as being the same placeholder� thus preventing an exponential
explosion at the loss of generality�

Coordinating direct search� the URL Learner module

In case of a successful search� the URL Learner uses the URL Extractor module to
map every URL of the candidate homepages to a number of corresponding general
hypotheses� Those new hypotheses are simply added to its list of known hypotheses
�if they aren�t already in there� and their performance statistics �see below� are
initialized with the unknown� value�
In case Ahoy� could not �nd a successful hypothesis� the URL Learner will search

the existing hypotheses�lists for applicable hypotheses� If the user failed to specify an
institution and none could be inferred from the emails found� Ahoy� will not use any
of its hypotheses� Otherwise� it will use the institutional information from Ahoy��s

��See 	gure ��� on page ���

�� Ahoy� The Homepage Finder

orthogonal information sources �i�e�� the overlap�� see �gure ��� on page �
�� to
select a small number of sites to search� The existing general hypotheses at these
sites will then sorted according to their past performance and used to generate a list
of instantiated hypotheses� which can then be used directly to �nd the desired page�
This list of instantiated hypotheses represents Ahoy��s overall hypothesis where the
information for this particular search request is most likely to be stored�
The performance statistics of a general hypothesis are updated every time one of

its instantiated hypotheses is used to �nd a speci�c homepage� If it was successful�
a positive feedback is given for the general hypothesis that was used to generate this
URL� If it fails to �nd the correct page� negative feedback is given instead� However�
is none of the available instantiated hypotheses is able to �nd a page� all feedback
from this search is discarded� This is done in order to avoid accumulating a large
amount of negative feedback from queries that might simply not have an answer �i�e��
an existing homepage� at all�
When selecting the list of hypotheses to use in case a particular search failed�

these statistics are used to order the available hypotheses at a given site according
to their performance in the past� Generating instantiated hypotheses is done in the
order suggested by their past performance� which is also kept during the actual direct
Web search� so that instantiated hypotheses from successful general hypotheses are
tried �rst� This not only ensures short direct search times by Ahoy� since it will try
most promising hypotheses �rst� but also helps to prune erroneous hypotheses that
are not useful for �nding homepages���

If a particular general hypothesis lacks su�cient feedback �e�g�� it was only re�
cently acquired�� the URL Learner will solicit feedback at higher levels in the domain
hierarchy� as described for the generic DRS�architecture in section ������
Finally� it should be noted that these performance statistics are not used to

determine the correct� format of homepage URLs at a given institution� Instead� the
hypotheses ranked top by the URL Learner re�ect both user demand for a particular
set of people and a lack of availability through standard sources�

����� Miscellaneous

This section lists the modules mentioned in �gure ��� that do not �t into any of the
�ve preceding categories� Additional smaller modules are brie�y described in the
appendix�

Main control script

The Main Control Script coordinates all modules of the Ahoy� system� Two di�er�
ent scripts are used� depending on the type of search that should be performed�
The default script� nph�ahoy�cgi� handles new searches and uses all of the mod�
ules described above� In addition� the nph�continue�cgi script is called whenever

��Though no pruning is done in the current version of Ahoy�� subsequent experiments in this area
should provide enough data to incorporate cut�o� values based on the kept statistics�

��� Evaluating Ahoy �	

Ahoy� asks the user to specify a site that it should search directly in case of a failed
search� This continuation� script does not need to connect to any information
sources� and only contains the modules that allows it to directly search for the desired
pages� All modules that deal with information sources �MC Manager� Inst Manager
and Email Manager� are replaced with dummy methods that re�read the information
stored in the matching session directory �see section ����� on page ��� of the initial
search�

Multiplexer

The Multiplexer module allows the Main Control Script to access a number of Inter�
net and local sources in parallel� After registering each request as speci�ed by the
information sources modules� the Main Control Script simply calls the wait method�
and is then noti�ed as soon as any information becomes available� This is used to
provide the user with continuous status information during a search��	

DB Manager

Ahoy� uses various DB Manager� which share a uniform interface� to access and store
temporary information on disk� Ahoy��s DB Manager transparently handle the orga�
nization of data �les into hierarchical directories �in order to prevent performance
problems when accessing directories featuring a large number of �les�� as well as
providing access to plain text and Berkeley DB �Sof� �les �the latter ones are used to
e�ciently store the large amounts of data available during cross�domain learning��

��� Evaluating Ahoy

This section gives an overview of the experiments we conducted to measure Ahoy�s
performance compared to the standard search services currently available on the
Web�

We will �rst examine the standard measures used in the �eld of information
retrieval �IR� to asses the performance of a retrieval system� recall and precision� and
describe why we can not use them directly� both in the �eld of Web Search Systems
in general and with the task of DRS�System in particular� We will then introduce
our own measurements� recall � and precision �� which we will use to approximate the
standard measures� and describe our experimental setup in more detail�

After presenting the results of our main performance experiments� which deal
with Ahoy��s search capabilities� we will brie�y describe our second set of experiments�
which examine the e�ects of using the hypothesis performance statistics we described
in section ����� on page �
�

��Only possible if the user is using a browser that supports multiple pages of output� such as the
Netscape browser�

�� Ahoy� The Homepage Finder

����� IR Performance Measures

Several aspects have to be considered when examining the performance of a system�
�Sal�
� argues that many types of evaluation environments exists� di�erent systems
�operational� testbed� laboratory� as well as di�erent concerns �users� managers�
operators�� Instead of evaluating managerial issues such as maintenance e�orts and
costs� we want to focus in our experiment on the ability of an operational system
to satisfy the user� �Cle��� lists the following six criteria all of which a�ect user
satisfaction�

�� Coverage� The extent to which the system includes relevant matter�

�� Time lag� The average interval between the time the search request is made
and the time an answer is given�

�� Presentation� The form of presentation of the output�

�� User E�ort� The e�ort involved on the part of the user in obtaining answers
to his search requests�

�� Recall� The proportion of relevant material actually retrieved in answer to a
search request�

�� Precision� The proportion of retrieved material that is actually relevant�

We already gave brief qualitative comparisons of the �rst four points for the systems
examined here in section ��� �see also summary in table ��	�� In the remainder of this
section� we will focus instead on the last two criteria � most popular performance
measures in the �eld of information retrieval � precision and recall�

Recall � Precision

Recall and precision are standard performance measures in the �eld of information
retrieval� Recall is de�ned as the proportion of relevant matter retrieved� whereas
precision is the proportion of retrieved material actually relevant �Sal�
��

� Recall� A measure for the comprehensiveness of a search service� The higher
the recall� the more likely it will �nd the information the user is looking for�

Recall #
number of relevant documents retrieved

total relevant documents in collection
�����

� Precision� A measure for the accuracy of a search service� The higher its
precision� the fewer irrelevant entries will return for any given search�

Precision #
number of relevant documents retrieved

total retrieved
�����

��� Evaluating Ahoy ��

Criteria Web Index Web Directory Meta Index DRS

Coverage
High

Automatic
updating

Low
Manual updating

High
Uses Web Indices

High
Uses Meta Indices

Time lag

Short
Simple query
techniques allow
fast lookup

Short
Simple query
techniques� small

index�

Medium
Can be as slow as
slowest service

Medium
Can be as slow as
slowest source

Presentation

Low
Simple list�
ranked by
�relevance�

Medium
List augmented
by categories

Low
Simple list�
ranked by
�relevance�

High
Single labeled
answer� including
additional
information

User E�ort

High
Manual searching
through list�
query

reformulation

Medium
Search through
classi	ed list

High
Manual searching
through list�
query

reformulation

Low
All relevant
information
presented on
single page

Example AltaVista Yahoo� MetaCrawler Ahoy�

Table ��
� Qualitative Performance Comparison� 	Cle��� lists six criteria which a�ect
user satisfaction� Four of them� Coverage� Time Lag� Presentation and User

E�ort� were already discussed in section ��� and are summarized here� The
remaining two� Precision and Recall are discussed in this section�

�� Ahoy� The Homepage Finder

Recall

Precision

1.0

0.5

0.5 1.00

Cutoff values

Recall
Precision

1 5 10 15 20 25

0.2 0.6 0.6 0.8 1.0
1.0 0.6 0.2 0.2 0.2

0.6
0.3

Request: 5 relevant documents
 ranks: 1, 2, 3, 20, 21

Figure ���� Precision�Recall Graph A precision�recall graph shows a number of
precision�recall pairs for various cuto� values� This example after 	Sal�� as�
sumes a response featuring relevant documents at position �� �� �� �� and ���

A retrieval system is usually characterized not by a single recall�precision pair�
but by a number of these pairs obtained at di�erent cuto� values��
 arranged in a so
called precision�recall graph� as shown in �gure ����
For a given system� it is usually straightforward to asses these numbers� First�

compile a set of test queries and tag all elements in the available dataset as either
relevant or irrelevant to each queries� Then perform all queries and compute the
average values for recall and precision according to formulas ��� and ���� respectively�
However� in the context of IR systems on the Web in general and DRS�Systems in
particular� two problems arise�

�� Conventional IR systems have hundreds� maybe thousands of documents in
their collection��� which makes providing relevance judgments for all documents
with respect to all search requests in the test set laborious� but possible� But
for the Web� containing over hundred million documents� it is impossible to
asses the relevance for every document� even for a very small number of test
requests� Thus� we cannot compute recall as given above� because the total
number of relevant documents in collection� is never known�

�� DRS�Systems are best used when searching for tightly bound sets� such as
a particular homepage� paper or review �see table ��� on page ���� When
using a DRS�System� �nding a single relevant reference is usually su�cient to
answer the query � any further relevant� references are likely to be redundant
in most domains �e�g�� other addresses for same homepage� other citations of

�	IR systems usually return a list of ranked elements for a given search� Using a cuto� value� the
system designer can specify how many elements of the list to show to the user� thus greatly
in�uencing the precision and recall of the system�

�
The collections evaluated by �Sal���� ADI� Cran�eld�� and IRE��� featured between �� and ���
documents�

��� Evaluating Ahoy ��

Recall

Precision

1.0

0.5

0.5 1.00

Cutoff values

Recall
Precision

1 2 3 4 5 10

0 0 1 1 1
0 0 0.25 0.2 0.1

0
0

Request: 1 relevant homepage
 ranks: 4

Figure ��
� Precision�Recall Graph in DRS�domain� Using precision and recall to
compute performance in DRS�domains such as personal homepages results in a
number of �zero precision� zero recall� values� until the cuto� value includes the
single relevant reference �if the particular service found it�� From then on� all
data points feature ��� percent recall and a precision of ��cuto�� This suggests
using di�erent measures in our experiments�

same paper� etc�� Thus� computing precision will usually result in either zero
or the inverse number of documents retrieved ���n�� because the total number
of relevant documents retrieved� is either zero or one�

Even when assuming only a single relevant reference in order to compensate for the
�rst problem �the unknown number of existing relevant documents�� our experiments
in the homepage domain would still fail to produce reasonable results� Using precision
and recall to compute performance would only result in a number of zero precision�
zero recall� values� until the cuto� value would include the single relevant reference
�if the particular service found it�� From then on� all data points would feature
��� percent recall and a precision of ��cuto�� Figure ��	 shows the corresponding
precision recall graph�

Alternative Measures

In order to be able to compare the performance of various search services in DRS�
domains� we de�ne our own precision� and recall� measures� precision � and recall ��

� recall �� Given a list of queries� the percentage of them that found the correct
answer within the complete answer set �up to ��� references with most services��
This is a measure for the comprehensiveness of a search service�

� precision �� Given a list of queries� the percentage of correct answers returned
as the top�ranked reference by each search service� This is a measure for the
accuracy of a search service�

� Ahoy� The Homepage Finder

Although these measures are named similar to precision and recall� we cannot com�
bine precision � and recall � into a precision�recall �or precision ��recall �� graph� since
these two measures no longer share common data points related to a speci�c cuto�
value and a speci�c query� Instead of a number of recall�precision pairs� a single
precision � and recall � value now characterizes the performance of a retrieval system�

precision � might be overly strict for practical purposes� however� Often a refer�
ence ranked second would also satisfy the user�s information need� We can compute
variations of the precision � measure when increasing the number of references exam�
ined� including for example the �� best references� denoted by precision ���� Similarly�
precision �� # precision � and precision �

�
recall ����

����� Experimental Setup

Now that we determined what we want to measure� precision � and recall �� we have to
�nd a way how to measure it� With Ahoy� serving thousands of search requests daily�
the idea of using a large sample of these real life user queries� taken over a week or
a month of service� seems ideally suited to provide an excellent� unbiased test set�

Unfortunately� sampling user queries is impractical� In many cases� it is di�cult
to determine objectively whether an obscure person mentioned by a query has a
homepage or not� Users are also fond of searching for the homepages of celebrities�
although the concept �celebrity� is di�cult to de�ne precisely� informal log analysis
reveals that �ve to ten percent of searches are for celebrities� Such searches pose
an unsolved testing challenge� which page�s� of the dozens devoted to an Oprah
Winfrey should be considered her correct homepage�s�% Because we cannot deter�
mine �correct� answers to actual queries� we cannot judge Ahoy��s performance on a
representative sample of queries���

Instead of using usage logs as a source of test queries� we use two Web sites that
list people along with the URLs of their homepages� One site� David Aha�s List of
Machine Learning and Case�Based Reasoning Home Pages� �Aha�� contains ��� valid
URLs� We call these homepages the Researchers sample� Another site� the netAd�
dress Book of Transportation Professionals� �The�� contains �� URLs for individuals�
homepages��� We call these homepages the Transportation sample� We chose two
independently�generated samples from disparate �elds in order to evaluate Ahoy��s
scope and breadth� The Researches sample provides a good indicator for personal
homepages at academic institutions� while the Transportation Sample represents the
growing fraction of non�academic Web users establishing their Internet presence�

��In most cases� in	nity would be bound to ��� as an upper value for the number of references
returned by most search services�

��Table ���� on page ��� however� presents statistics that partially characterize Ahoy��s performance
on actual user queries�

��Both samples were taken in September ����� Since those lists evolve constantly� today�s versions
might contain signi	cantly more or less entries� however�

��� Evaluating Ahoy ��

Methodology

A large number of studies in recent years have attempted to compare the performance
of various popular search services on the Web �Pau	
�� �Pal�� Some studies simply
record the number of indexed pages for a given keyword or site �Leb���� others try
to compare the usefulness of the services through head to head quiz competitions
�Lak	
��

In contrast� our experiments tried to measure the search services performance
on �nding a single right answer� given a particular query� Using a sample set of
more than six hundred query�answer pairs� we would send one query at a time to
all competing services and then record the position of the expected answer �i�e��
the URL of the correct homepage for that person� among each services output� or
missed� in case the answer could not be found�

While testing each competing service on the sample set� we used query syntax
that maximized the performance of the service in �nding personal homepages� For
example� if the target homepage belongs to John Smith� we used AltaVista�s �ad�
vanced syntax� to search for �John NEAR Smith� and ranked the results using the
string �John Smith�� Queries to HotBot invoked its person�speci�c search option� In
addition� in the tests for recall �� each service was allowed to return as many refer�
ences as possible � about ��� each for AltaVista and HotBot� usually less than ��
for Yahoo�� and approximately �� for the MetaCrawler� Ahoy� usually returns one or
two references�

Sample Transportation Sample Researchers Sample
Service Average Rank Std� Deviation Average Rank Std� Deviation

Ahoy� ���� ���
 ���� ����
MetaCrawler
��� 	���
��� ����
AltaVista ���� 	��
��� �	�
	
HotBot
��� ���
 ��� ���	
Yahoo� ���
 ���
 ���� ���

Table ����� Average Rank of Targets The �Average Rank� column shows how many
references a user will typically have to read through before �nding the desired
homepage� if the homepage is found� Ahoy� and Yahoo� place the average
target page at the top of their output� while the other services tend to place
the target page under several non�target references�

��Which raises the question as to what the di�erence is between� say� ���� and ����� returned
references in both cases it is highly unlikely that the user will actually look at more than the
	rst ���

�� Ahoy� The Homepage Finder

0%

10%

20%

30%

40%

50%

60%

70%

80%

Ahoy! MetaCrawler Hotbot AltaVista Yahoo!

Search Service

Ta
rg

et
s

F
ou

nd
Highest-ranked Reference

�a� precision � Researchers Sample

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

Ahoy! MetaCrawler Hotbot AltaVista Yahoo!

Search Service

Ta
rg

et
s

F
ou

nd

Highest-ranked Reference

�b� precision � Transportation Sample

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

Ahoy! MetaCrawler Hotbot AltaVista Yahoo!

Search Service

Ta
rg

et
s

F
ou

nd

Highest 10 References
Highest-ranked Reference

�c� precision �

�
 Researchers Sample

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

Ahoy! MetaCrawler Hotbot AltaVista Yahoo!

Search Service

Ta
rg

et
s

F
ou

nd

Highest 10 References

Highest-ranked Reference

�d� precision �

�
 Transportation Sample

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

Ahoy! MetaCrawler Hotbot AltaVista Yahoo!

Search Service

Ta
rg

et
s

F
ou

nd

All References
Highest 10 References
Highest-ranked Reference

�e� recall � Researchers Sample

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

Ahoy! MetaCrawler Hotbot AltaVista Yahoo!

Search Service

Ta
rg

et
s

F
ou

nd

All References
Highest 10 References
Highest-ranked Reference

�f� recall � Transportation Sample

Figure ����� Performance Comparison Ahoy�s accuracy in the homepage domain is sig�
ni�cantly higher than that of general purpose search services� Ahoy� surpasses
the precision � of its closest competitor� HotBot� by a factor of almost three
�a���b�� Including the �rst ten references� Ahoy� still features over �� per�
cent better performance �c���d�� Even when including all available references�
Ahoy� demonstrates an up to
 percent better recall �� due to its URL Learner

module �e��

��� Evaluating Ahoy ��

����� Results

Figures ���� �a�� �c� and �e� show results for the Researches Sample� �gures �b�� �d�
and �f� the results for the Transportation Sample�

With about three quarter of all homepages in the Researchers Sample ranked top�
Ahoy� surpasses its closest competitor� HotBot� by a factor of almost three ��gure
���� �a��� The same experiment using the Transportation Sample still results in ��
percent of the pages shown as the highest�ranked reference by Ahoy�� compared to
less than �� percent for the MetaCrawler and AltaVista�

Another way of capturing accuracy is to calculate the average rank of the target
URL within the output of successful searches �see table ������ A low rank is good�
because that means the target reference will be displayed prominently near the top
of the output� Conversely� a high rank suggests that irrelevant pages have been
erroneously ranked higher than the target� A very high rank also lessens the likelihood
that the user will bother to scroll down and �nd the target�

Under the average rank metric� Ahoy��s accuracy is signi�cantly higher than that
of every search service except Yahoo�� Yahoo��s precision comes at the expense of
coverage� however� as demonstrated by Figure ���� �e� and �f��

If we take the maximum number of references returned into account �up to ���
for HotBot and AltaVista�� we can get an idea for the comprehensiveness of the
search service� As one would expect� the MetaCrawler features the highest recall �

value of Ahoy��s competitors� since it combines the output from a number of search
services� including HotBot and AltaVista� But even though Ahoy� �lters the output
of the MetaCrawler� it has an up to 	 percent higher recall �� This increase is due to
Ahoy��s URL Generator� which allows it to generate URLs missing in the output of
all of its competitors� The recall � for Yahoo�� the manually compiled Web directory�
is predictably low� Less than one percent of the people in the Researchers Sample
have registered their homepage with Yahoo�� compared to about ten percent of the
Transportation Sample�

Data from the �elded Ahoy�� as given in table ����� helps explain why the URL
Learning module is able to increase Ahoy��s recall �� As of November �		�� Ahoy�s URL
Pattern Extractor learned more than ������ patterns from over ����� institutions�
In August �		
� this �gure had risen to include more than ������ patterns from over
������ institutions� Although this �gure is small compared to the number of sites
with a Web presence� it re�ects the distribution of sites at which users have found
homepages in earlier searches before� In other words� the content of Ahoy�s URL
database is skewed in a way that resembles the type of queries posed to Ahoy��

Because of that� Ahoy� is able to use information from its database in more than
�� percent of all failed searches where the user speci�ed an institution� In �
 percent
of all cases when Ahoy� generates a URL� it �nds a page that it considers to be a
target homepage�

�� Ahoy� The Homepage Finder

Searches over � months ������
Unique target names seen ������
Clients originating queries ������
Clients originating over �� queries ���
Institutions in Ahoy��s URL pattern
DB

����

Patterns in Ahoy��s URL pattern DB ������
Searches for which user follows at least
one link

��

Searches considered �Unambiguously
Successful� by Ahoy�

��

Searches in which result is a generated
URL unavailable from reference sources

�

References provided in
each search
Median �
Mode �
Mean ���
Standard Deviation ���

Search speed �seconds�
Median 	
Mode �
Mean ��
Standard Deviation ��

Table ����� Cumulative Results� These data suggest that many people search with Ahoy�
regularly� Users search for a wide variety of people at a wide range of institu�
tions� In most cases� Ahoy� returns one or two references� but in some cases �
notably� searches for celebrities with dozens of �homepages� created by fans �
it returns many more� Data are based on Ahoy� operations during a ��month
period ending late October� �

� 	SLE
��

����� Discussion

The design of experiments to measure the e�ectiveness of Web Search Services is
di�cult� Our above results contain experimental biases both in favor and against
Ahoy��

The discrepancy between the small number of hits returned by Ahoy� and the
larger number returned by the other services biases comparisons of recall � against
Ahoy�� the other services have� in e�ect� many more opportunities to �get the right
answer�� Furthermore� references displayed deep in the list are of questionable value�
many users are unwilling to scroll past the �rst ten or twenty references returned
�Win	��� Thus� pure recall � �gures understate the value added by Ahoy��

On the other hand� the experiments contain two biases in Ahoy��s favor� First�
Ahoy� has the advantage of being domain�speci�c� Second� queries to Ahoy� contain
the name of the target institution� information not provided to the other services�
Ahoy��s domain�speci�c knowledge� used in the framework of its DRS architecture�
is what makes it e�ective� so removing the �rst bias would change the fundamen�
tal nature of Ahoy�� We might� however� remove the second bias by withholding
institutional information from Ahoy� or by providing such information to the other
services�

Withholding institutional information would prevent Ahoy� from using its full set
of features� including the institutional cross��lter and the URL Generator� Even so�
Ahoy��s precision under these conditions remains over �fty percent higher than that of

��� Evaluating Ahoy �	

Ahoy! without
institutional info

direct search
Ahoy! without

20% 40% 60% 80%

Ahoy!

HotBot
Se

ar
ch

 S
er

vi
ce

precision’

Researcher Sample
Transportation Sample

Figure ����� Restricting Ahoy�� precision � Performance Comparison� Removing
Ahoy��s directed search feature� or even withholding institutional information�
reduces Ahoy��s precision � by up to ���� Even so� it still remains over twice
as high as any other service �only its closest competitor� HotBot� is shown��

the other services� as shown in �gure ����� Ahoy��s recall �� however� shows signi�cant
performance loss when removing the bene�t of the URL Generator� As shown in �gure
����� Ahoy��s performance is worse than that of the MetaCrawler when not using its
directed search feature� and even more so when withholding institutional information
completely�

Ideally� Ahoy��s recall � under these conditions should be close to� if not identical
to that of the MetaCrawler� But disabling Ahoy��s URL Generator shows that it not
only looses the ability to create the additional references that are not found by any
service� but also misses about � of the references that are already included in
the MetaCrawler output �see �gure ������ These references apparently fail to obtain
favorable values during Ahoy��s feature analysis because of uninformative titles or
unusual URLs� But using its URL Generator� Ahoy� is able to recreate these URLs
by instantiating previously acquired general hypotheses and then generating direct
requests for each of them� Obviously� Ahoy� could compare each reference in its
base reference set with its instantiated hypotheses to �nd these missed entries before
trying to locate them directly���

The reason for the second performance loss � when completely withholding insti�
tutional information from Ahoy�� is its internal bias for small answer sets� In many
cases� Ahoy� �nds a substantial number of homepages for people with the same name�
Using its cross��lter� it is able to discard a large number of these� which obviously
belong to a di�erent person� However� without any institutional information� the
correct target homepage might often be of only suboptimal quality �i�e�� featuring
only part of the name� or none at all�� so that references with a more prominent title�

��Ultimately� this step should already be incorporated during the content analysis phase by rein�
forcing URLs that match such previously acquired general hypotheses�

�� Ahoy� The Homepage Finder

Ahoy! without
institutional info

direct search
Ahoy! without

20% 40% 60% 80%

Ahoy!

Se
ar

ch
 S

er
vi

ce
Metacrawler

recall’

Researcher Sample
Transportation Sample

Figure ����� Restricting Ahoy�� recall � Performance Comparison� Ahoy��s perfor�
mance is worse than that of the MetaCrawler �its closest competitor regarding
recall �� when not using its directed search feature �but still specifying the cor�
rect institution�� and even more so when withholding institutional information
completely� While the �rst represents a shortcoming of the current implemen�
tation� the reason for the second performance loss lies in the characteristics of
DRS�domains in general�

but belonging to the wrong person� will simply look better�� Since Ahoy��s selec�
tion mechanism only displays the content of the best� bucket as the �nal answer�
the correct homepage gets lost in a lower�ranked bucket� Improving the answer se�
lection mechanism with respect to this apparent insu�ciency seems futile� however�
Recalling the DRS domain characteristics in table ��� on page ��� these searches
violate item �� the focused attention� constraint� � � � the user can pose a query
speci�c enough to exclude other members�� With more and more people with similar
names providing homepages on the Web� specifying the institution becomes essential
in order to explicitly select a single person�
On the other hand� when providing institutional information to the general�

purpose search engines� the services� precision � increases slightly� and their recall � de�
creases signi�cantly��� Why does such additional information decrease performance%
This might have several reasons�

� The name of the institution may not appear on the target homepage and thus
may confuse the search engines� ranking algorithms�

� The general query syntax appropriate for an institutional search often makes it
impossible or impractical to take simultaneous advantage of a services person�
speci�c query syntax�

��Only informal studies where made here�

��� Evaluating Ahoy ��

� User�provided institutional information is often ambiguous or incorrect� Ahoy��s
institutional cross��lter is designed to be forgiving of imperfect institutional
queries� general�purpose ranking algorithms do not have this luxury� For ex�
ample� a user may input the query �Oren Etzioni at UW� to Ahoy�� but adding
�UW� to an AltaVista query would only serve to confuse it�

����	 The e�ect of Hypothesis Statistics

In order to evaluate the e�ect of keeping statistics that record the performance of
each hypothesis� we evaluated three di�erent strategies for selecting the order in
which prospective hypotheses should be used during directed search�
The simplest strategy� called as�is� strategy� simply records new hypotheses in

the order they are discovered� without trying to reorder the existing hypotheses lists�
This method� featured in the �rst implementation of Ahoy��s direct search module�
was soon replaced by the last�successfully�used� strategy� Record which hypotheses
have been successful during the last direct search� and put these at the top of the
list so that they are going to be used �rst the next time this site is searched�
Finally� recording information both about the times a hypothesis has been used� as

well as the number of successful applications� we can compute the Laplace Accuracy�
�CB	��� which allows us to compute a �con�dence� value for each hypothesis� providing
a performance based ranking for subsequent searches� In its simplest variant� the
Laplace accuracy L takes the following form���

L #
P & �

N & �

where

P is the number of positive examples
N is the number of negative examples

This measure is currently used in Ahoy�� It ensures that a hypothesis that was
successful ��� out of ��� times is prefered to another one that worked � out of �
times� although the expected accuracy of the latter one would be ��� � Using the
Laplace accuracy� we can compute the expected accuracies to be�

� & �

� & �
����
 and

��� & �

��� & �
# ��	
�

which is more consistent with our intuitive notion�

Setup � Methodology

During a period from May �st �		
 until June ��st �		
� we let Ahoy� record addi�
tional information that could be used to evaluate di�erent strategies in hypothesis
selection�

��A derivation of the basic formula can be found in �Nib����

�� Ahoy� The Homepage Finder

Number of hypotheses Number of times
Site hypotheses used successful used successful

washington�edu ��
 	� � ��� ��
compuserve�com �
 �
 � ��� 	
att�com �� 	 � ��

gte�net 	
 �
�
�
concentric�net �� �� � �	 	�
ridgecrest�ca�us � � � �� 	

ed�ac�uk
� �� � �� 	

usa�net � � � �� 		
uvic�ca �� � � �� 		
ihug�co�nz � � � �� 	�
duke�edu ��� � � �� �
purdue�edu �	� �
 � �� �
columbia�edu �� �� � �
 �
infoave�net � � � �� �
ohiou�edu ��
 � �� �
psu�edu ��� �� �
� �
jaist�ac�jp �� �� � �� �
marshall�edu �� � � �� �
sympatico�ca �� �� � �
 �
monash�edu�au 	� �� � �
 �
utexas�edu ��� �� � �� �

Table ����� Successful Hypothesis Application by Site ������ � ������ Using the
sites with the highest number of successfully used hypotheses ensures that we
can observe a large enough e�ect of keeping statistics� Evaluating the perfor�
mance of sites with a low number of successful searches would make it hard to
examine the bene�ts of keeping these statistics� since only few data points used
for computing these performance �gures would actually be available�

For each search that resulted in a Failure� but had enough institutional infor�
mation available to use Ahoy��s directed search feature� we recorded all user query
information� along with Ahoy��s selection of searchable servers� In case Ahoy� queried
the user to make a choice on which site to search� only the users choices would be
kept� Finally� a summary of Ahoy��s results� together with eventually successfully
applied hypotheses would be stored�

After monitoring Ahoy��s directed searches this way for over � weeks� we then
collated the conducted directed searches and �ltered out those that were unsuccessful�
The successful hypotheses of the remaining searches were then sorted by site and
ordered according to the total number of successful searches per site �see table ������

Using the sites with the highest number of successfully used hypotheses ensured
that we could observe a large enough e�ect of keeping statistics� Evaluating the

��� Evaluating Ahoy ��

' relevant Rank using statistics
Site hypotheses Laplace last�used as�is�

cs�washington�edu �� � � ��
u�washington�edu �� � �� ��
compuserve�com �
 � � �
att�com �� � � ��
gte�net 	 � � �
concentric�net �� � � �
ridgecrest�ca�us � � � �
ed�ac�uk
� � �� �
usa�net � � � �
uvic�ca �� � � �
ihug�co�nz � � � �
duke�edu ��� � �� �
cs�purdue�edu �	� � �� ��
cc�purdue�edu �	� � � �
cs�columbia�edu �� � � �
cpmc�columbia�edu �� � � ��
infoave�net � � � �
ohiou�edu �� � � �
psu�edu ��� � � �
jaist�ac�jp �� � � �
marshall�edu �� � � �
sympatico�ca �� � � �
monash�edu�au 	� � � �
cc�utexas�edu ��� � �� ��
ma�utexas�edu ��� � �� ��

Average
� ��� ���� �����

Table ����� Sample Searches� The �nal performance data was obtained by re�issuing one
example search for each of the sites in table ���� and comparing the position of
the recorded� successful URLs� with the proposed ranking obtained by each of
the three di�erent mechanisms� While the average position of a correct URL is
more than �� when using no sorting at all� keeping the last successful hypotheses
at the top of the list results in over ��� improvement� Using information
about the number of successful searches� as well as the overall number of times
a certain hypotheses has been used� the Laplace Accuracy is able to almost
always rank the correct hypothesis at the top position�

� Ahoy� The Homepage Finder

performance of sites with a low number of successful searches would make it hard
to see the bene�ts of keeping these statistics� since only few data points used for
computing these performance �gures would actually be available�
The �nal performance data was obtained by re�issuing one example search for

each of the above sites� and comparing the position of the recorded� successful URLs�
with the proposed ranking obtained by each of the three di�erent mechanisms� In
case multiple URLs were successful� the best position within each ranking would be
recorded�

Results � Discussion

Table ���� shows the results of �� sample searches from the Ahoy� logs while com�
paring the highest positions of one of the successful URLs in the lists�
While the average position of a correct URL is more than �� when using no

sorting at all� keeping the last successful hypotheses at the top of the list results in
over �� improvement� Using information about the number of successful searches�
as well as the overall number of times a certain hypotheses has been used� the Laplace
Accuracy is able to almost always rank the correct hypothesis at the top position�
However� this simple experiments leaves several questions unanswered�

�� Although keeping statistics helps� it is not clear which measure provides the
best performance� Although better than a simple last�successful � �rst�used�
policy� the Laplace accuracy used in the current Ahoy� system still favors
sparsely used� but almost always successful hypotheses over those that have
been used over a thousand time� and succeeded about half of the time��	

�� How well does keeping cross�domain information help guiding the process% In
the experiment above� we only used information that was directly recorded at
each site� Further experiments would be necessary to examine the bene�ts of
having additional� global information available in case a particular hypothesis
has rarely been used at a certain site� Also� it remains unclear how to connect
local and global statistics to form a single con�dence value�

�� With some sites featuring a couple of hundred hypotheses� a crucial aspect of
direct search performance is the correct pruning of these long lists� Trying
all available entries simply takes far too long� but cutting o� too early might
prevent Ahoy� from �nding the correct page� even though it might have the
information further down on the list�

��Simply because the Laplace accuracy for � out of �� �� ! ����� ! �� " ����� is still better than
��� out of ����� ���� ! �������� ! �� " �����

 Beyond Ahoy	 Using DRS in other

domains

��� Introduction

In order to demonstrate the domain independence of our approach� we will extend
the application of DRS�Systems beyond the initially shown homepage domain and
introduce prototype applications in two other domains� Academic Papers and Jokes�
The next two section will examine both domains in details� as well as providing

architectural outlines and description of the initial prototypes� Both sections will
summarize the results of our brief experiments for each system�
The applications described below represent one�week e�orts and are not meant

to be as sophisticated as our homepage domain prototype� Instead� they are used to
demonstrate the feasibility of our approach in other domains�

��� Academic Papers

Research often involves following a large number of citations in a certain article or
book� Conventionally� one would try to �nd cited proceedings or journals in a library�
but the large number of publications makes it very hard for libraries to have all titles
available� Although inter�library�loans could in most cases order the relevant book
from another library� this takes e�orts and time� With the rapid growth of the
World Wide Web� an increasing number of authors publish their articles online �
either directly in HTML� the native markup language of the Web� or in Postscript
or PDF format that can be read by specialized viewers� These articles are available
from anywhere in the world� anytime of day� as long as the user has a Web connection
and browser software�
But �nding such online versions of relevant articles on the Web poses a problem

in itself� Citations in HTML �hypertext� articles are often directly linked to other
online articles� making the retrieval of a cited article a matter of a single mouse click�
However� if the original author did not spend the time to �nd the online addresses
for her citations� or when reading a copy on paper or in a non�hypertext format such
as Postscript� the reader still has to use conventional search methods in the form
of Web indices and directories to �nd the corresponding article� In these cases� an
information agent specialized in academic papers could simplify the search process

�� Beyond Ahoy� Using DRS in other domains

by allowing the user to search for the online version of an article� given the names of
the author and its title�
This section presents a very simple implementation of a DRS�System in the aca�

demic paper domain� which is able to �nd online versions of an academic paper given
the name of its authors and its title� As our initial experiments suggest� we are able
to achieve a satisfactory performance with very simple heuristics and our generic
DRS architecture�
After brie�y describing academic papers on the web� we will examine the � el�

ements of Dynamic Reference Sifters� as described in section ���� in the domain of
academic papers� leading to a rough architecture sketch which is described in section
������ This is followed by a section describing our experiments and their results�

	���� Description of the Paper Domain

Academic Papers share many features with the previously described homepage do�
main� We can examine this class of web pages according to the characteristics out�
lined in section ����� and summarized in table ��� on page ���

� Availability� Many� but not necessarily all� of their members are available
using a more traditional reference source� As more and more authors provide
on�line links to papers they wrote� or those they cited in their on�line articles�
a large number of academic papers is fairly accessible using standard search
engines like AltaVista�

� Focused attention� During a given search� a user is interested in very few�
and often only one� members of the class� and the user can pose a query speci�c
enough to exclude other members� Finding academic papers is often a very
focused search� where a user has found a citation in an article she is reading�
and now wants to review the referenced article in full��

� Strong cohesion� Their members are easily identi�able as belonging to the
class� As with Ahoy�� any tool in this domain would need to rely on domain
speci�c methods in order to detect pages �or references� belonging to this class�
As it should become clear from our experiments� such an identi�cation method
is fairly easy to construct� and o�ers a surprisingly good performance�

� Large cardinality� They are too large or too dynamic to be exhaustively in�
dexed by hand� Similar to personal homepages� a large amount of new papers is
published everyday� and more and more authors provide copies of their articles
on�line�

�Although less focused searches are possible� like looking for all papers of a speci	c author on
a certain topic� these searches can be mapped onto a focused search by providing a database
frontend like INSPEC �containing abstracts and keyword indexed articles sorted by author�
which would then provide the necessary focused information �like title and authors of a relevant
paper��

	�� Academic Papers ��

� Widely dispersed� No central repository exists where all or most members can
be found� Although some institutional repositories exist� most online versions
of academic articles are published on local servers only�

Academic Paper come in a number of di�erent formats� While Personal Home�
pages are standard HTML documents that provide elements like title or snippet in
the search service output� academic papers can also be in Postscript� PDF� or an
archive format such as tar or gz� Documents in these formats are not indexed by
standard Web indices� and thus will not show up in the output of any of the standard
services� In order to �nd articles in these formats� we will have to �nd links to these
�les from standard HTML pages� for example from the authors personal homepage�

	���� Paper Mate
 A Case study

User Interface

The search form for Paper Mate� as shown in �gure ���� simply contains a �eld for the
name of the authors as well as one for the title of paper� The author �eld accepts it
input in the most common formats used in citations �such as �rstname lastname��
f� lastname�� lastname� �rstname�� et al�� etc��� so that the user can simply copy
the given author name�s� from any available citation� The title �eld also accepts a
substring of the paper title� although care should be taken not to change the word
order or omit single words� Also� using a fairly speci�c part of the title instead of a
common one will have a much higher chance of �nding the correct article�
During the search� Paper Matewill continuously update the user about its progress��

before it will present the �nal answer consisting of references to the paper� citations
with links to online versions of it� or possible documents containing information
about it �see �gure ���� In this simple prototype there is still a chance of receiving
an uninformative nothing found� answer� without giving any further� orthogonal
information� Future work could include links to the homepage of the author or
corresponding institution or conference in the results� in order to allow the user to
manually continue her search or contact the author of the article directly� Also�
future improvements might allow the user to specify additional information in the
search form� like subject keywords� any known institutional a�liation of the author
or even the corresponding conference name the article was accepted at�

Control Flow

The fact that some articles might not be indexed directly by standard Web indices
has two consequences� First� the query for the base reference set has to be speci��
cally geared towards �nding not only HTML versions of academic articles� but also
documents that contain links to non�indexed versions of these papers� Second� for

�Adobe�s Portable Document Format� the successor of the Postscript format�
�This feature requires a Netscape browser�

�� Beyond Ahoy� Using DRS in other domains

Figure ���� Paper Mate Search Form� The user is asked for the author name�s� and
title of the article� Paper Mate accepts a wide range of name forms common
to scienti�c citations� The title �eld also accepts a substring of the paper title�
although care should be taken not to change the word order or omit single
words�

the latter kind of documents the relevant information �i�e�� the link to the article�
will not be directly available in the output of the search services� Instead� the system
will have to select a number of references to download and then parse their full text
in order to �nd any of these links�

Figure ��� shows the three separate queries that are used to address the �rst
consequence� Instead of a single query to the MetaCrawler� Paper Mate uses the
advanced query syntax that is o�ered by a few Web indices such as AltaVista or
HotBot�� to search directly both for HTML versions of the article �which feature
a corresponding title� and for documents containing links to online versions of the
paper� In order to compensate for the lack of comprehensiveness when using a single
Web index� an additional third query to the MetaCrawler is made� which can be used

�The current implementation uses only AltaVista�

	�� Academic Papers �	

Figure ���� Paper Mate Results Screen� In case Paper Mate was able to �nd one ore
more references to the desired article� or even the article itself� it displays those
together with a brief description �the title and URL of the document that
contained the reference��

Query � � for HTML articles�

author� NEAR author� NEAR ��� AND title��titlephrase�

Query� � for links to articles�

author� NEAR author� NEAR ��� NEAR �titlephrase�

AND �link�ps OR link�pdf�

Query� � backup query�

author� AND author� AND ��� AND �titlephrase�

Figure ���� Paper Mate Base Reference Set Queries� Instead of a single query to the
MetaCrawler� Paper Mate uses the advanced query syntax that is o�ered by a
few Web indices such as AltaVista or HotBot to search directly both for HTML
versions of the article �which feature a corresponding title� and for documents
containing links to online versions of the paper�

�� Beyond Ahoy� Using DRS in other domains

Base Reference
Source

Analysis &
Classification

Heuristic Filter

Bucketing

Filtering

Information
Sources

Results

References
Download

User Query

Full-text
Analysis

"Link" references available

Figure ���� Paper Mate Control Flow� After sending its three queries to the correspond�
ing search services� the returned references are analyzed and sorted into buckets�
Any promising �Link� references are downloaded and their full text searched
for embedded links to the desired paper� Any such citation is rewritten as a
standard reference and sorted into the appropriate bucket� Once all �Link� ref�
erences have been downloaded� or a su�cient number of references are available
for display� the response is sent back to the user�

as a backup� in case the �rst two queries should come up empty�
The second consequence� the need to download the full text of some of the refer�

ences� can be split up into two problems�

�� Identifying promising pages to download� In order to be able to o�er
a response in a timely fashion� the system should download as few pages as
possible�

�� Finding and extracting the information within the full text of a page�
Simply providing the user with documents containing the link to the desired
article is not enough� If the user has to spend a long time reading the whole
page herself in order to �nd the contained link� the added value of the DRS�
System is greatly reduced�

	�� Academic Papers ��

The control��ow outlined in �gure ��� shows the corresponding two�step approach
in Paper Mate� After analyzing the initial references from the base reference set �which
were obtained using the three queries in �gure ����� a �rst bucketing phase sorts them
into three categories� html
version� contains
link and none�
The �rst bucket� html
version� holds those references that already feature the cor�

rect article title as the HTML title� These references should already constitute valid
answer to the user�s query� However� a cuto� value determines additional downloads
of references in the contains
link bucket� Downloading of additional references con�
tinues until all elements in this bucket have been requested� or the minimal number
of references have been found��

The full text of each downloaded reference from the contains
link bucket is scanned
for embedded links and each link is examined together with its surrounding area
�according to HTML markup� i�e�� the paragraph� the list item� etc��� After analyzing
a number of features� such as the paper�title match�� the author match�� the link
type� and the size of surrounding area�� a virtual reference is created� just as if the
part containing the link had been found directly as a reference in the base reference
set�
These newly created references are sorted into the existing table� now allowing

two more buckets containing paper
citations� which holds successful citations that
include a link to a Postscript or PDF version of the paper� and citations
w�o
link�
which contains those that simply cite the paper but do not o�er a corresponding
link�
As soon as a su�cient number of references has been sorted into both the html

version and paper
citation bucket� the download is interrupted� and the content of
these buckets is displayed to the user� If none of these buckets could be found� the
most promising references of the other buckets are shown instead�

	���� Experiments

Experimental Setup

We used a simple� qualitative experiment to test the feasibility of our DRS�System in
the Academic Paper domain� Using a set of academic paper citations that are known
to have an online version on the Web� we used their author and title information
to query Paper Mate and recorded the number of papers we could �nd this way�
In addition� we compared its performance to the WebFind system �ME	��� a �non�
public�� Web service similar in scope to Paper Mate� which was developed at the
University of California� San Diego�

WebFind uses knowledge guided search� similar to the early Ahoy� prototype
described in section ������

�� A query to the Melvyl database� a traditional information retrieval system for
magazines and journal articles at the University of California� determines the

�This is done to increase the chance of �getting it right� for the simple prototype�
�Thanks to the authors for allowing access to the WebFind system during our experiments�

�� Beyond Ahoy� Using DRS in other domains

institutional a�liation of the principal author� By specifying the author�s name
and a set of keywords� the user is �rst presented with a list of articles by the
author on the given topic� and can then select the articles WebFind should
search for�

�� Using the publicly accessible Net�nd directory� which �nds Internet addresses
given the name of an institution� a candidate set of Internet domains is compiled
which allow WebFind to �nd the URL of the institutional homepage�

�� Starting from the institution�s homepage� WebFind analyzes and follows hyper�
text links in order to �nd the authors personal homepage�

�� A similar strategy is then used to �nd the online version of the desired paper
o� the authors homepage�

SinceWebFind takes a list of keywords instead of the paper title� we �rst manually
tried a number of keywords �or none� to list all available articles of the author�� as
well all names of co�authors� to �nd the matching entry of the desired paper in the
Melvyl database�
The list of papers was taken from the proceedings of a recent Web conference

�Gen	
�� Choosing articles at random� one or two references were selected that ap�
peared in the bibliography and included a URL address for the online version of the
cited article�

Experimental Results

Figure ��� gives an overview of the results� Paper Mate is able to �nd over 	� of
the test examples� while WebFind fails to �nd a single one� The breakdown in �gure
����b� helps explain the dismal failure of WebFind� Only about half of the papers in
the test set were indexed in the Melvyl database� WebFind�s principal source for the
institutional a�liation of the author� For half of the remaining references� Net�nd
was then unable to �nd a corresponding server� so that WebFind could continue its
search on the institutional homepage� Many of these references featured institutions
in Europe� which are apparently not accessible via Net�nd�� Finally� from only two
of the remaining 	 institutional homepages WebFind was able to �nd a link to the
apparent homepage of an author � one for a completely di�erent person� the other
one a simple mailto�	 link� Not surprisingly� WebFind could not locate a link to the
desired papers from any of the two�
The performance of WebFind is a good example for the problems of such a sequen�

tial approach� at each step� the chances of failure increase exponentially� Demon�
strating a roughly �� chance of failure at each step� the ��step WebFind algorithm

�However� Net�nd was also unable to 	nd a server for the institution named �Lab� for Comput�
Sci�� MIT� Cambridge� MA� USA��

�Instead of a http� link� which connects a page of hypertext to another page of hypertext �or at
least to a picture� video or sound�� the mailto� link only prompts the users browser to send an
email message to the speci	ed email address�

	�� Academic Papers ��

Paper Mate WebFind
Article found time �s� found time �s� problem

� yes �� no � Net�nd
� yes �� no � Melvyl
� yes �	 no � Melvyl
� yes �	 no � Melvyl
� yes �� no � Net�nd
� yes �� no � Melvyl

 yes �
 no � Melvyl
� yes �� no ��� no paper
	 yes �
 no � Melvyl
�� yes �� no ��� no hp
�� no ��
 no 	� no hp
�� yes �
 no �	� no hp
�� yes �� no 	� no hp
�� no �� no ��� no hp
�� yes �� no � Melvyl
�� yes �� no ��� no hp
�
 yes �� no � Net�nd
�� yes �	 no � Net�nd
�	 yes �� no ��� no hp
�� yes �� no ��� no paper
�� yes �	 no � Melvyl
�� yes �� no � Net�nd
�� yes �� no ��� no hp
�� yes �� no � Melvyl
�� yes �	 no ��� no hp
�� yes �� no ��min timeout
�
 yes �
 no � Net�nd
�� yes �	 no � Melvyl
�	 yes �� no � Net�nd
�� yes �� no � Melvyl
�� yes �� no � Net�nd
�� yes �� no � Melvyl

Total �� � �� � � 	�

Table ���� Paper Mate Results per Article� A list of �� articles were used to compare
the performance of Paper Mate with the similar WebFind system� Paper Mate

failed to �nd � of the papers� while WebFind was unable to locate a single article
from the test set� The reason for WebFind�s failure is given in the last column�
�Melvyl�� �Net�nd�� �no hp� and �no paper� correspond toWebFind�s four steps
algorithm described in section ������

� Beyond Ahoy� Using DRS in other domains

20% 40% 60% 80%

WebFind

Paper Mate

papers found

100%

93%

0%

�a� Final Results

institutions
found

pages found
apparent home

20% 40% 60% 80% 100%

32

56%

100%

28%

6%

18

9

2
references found

test set

St
ep

 in
 W

eb
F

in
d

papers found
in Melvyl

�b� WebFind Breakdown

Figure ���� Paper Mate Experimental Results� Out of the �� papers in the test set�
Paper Mate �nds ��� or
�� �a�� WebFind fails to �nd a single one� mostly due
to its sequential search algorithm� �b� shows how at each step WebFind fails to
�nd about half of the references� Only �� papers could be found in Melvyl� and
for only
 of themWebFind was able to �nd an institutional homepage� At these

 institutions� WebFind only found � apparent homepages of the authors� both
of which were incorrect� As a result� WebFind could not �nd a single reference�

	�� Academic Papers ��

Step ' of references
Original Reference Set ��

Containing full name information �
Ahoy� found personal homepage �

Manually located online version of paper �

Table ���� Results of Follow�up Experiment� Of the �� papers checked with Paper

Mate� only � included the full �rstnames �instead of the initials only� of the
authors� Of these � references� Ahoy� always found a personal homepage for at
least one of the authors� if not all of them� The input to Ahoy� was only the
given �rst� and lastname� since no institutional information was present in the
citations� By following links from these homepages� � papers could be located
manually�

�Melvyl� institutional homepage �using Net�nd�� author homepage� paper link� has
only a ����� or about � � chance of success� When confronted with a similar low
percentage of found papers during their experiments� theWebFind authors argue that
many authors have not yet put papers online� �ME	��� However� as our qualitative
result suggests� even those articles that are already available are hard to �nd with
such an approach�

Follow�up Experiment

One might argue that a specialized paper �nder such as Paper Mate is unnecessary�
once a system like Ahoy� exists� Instead of locating the desired article from scratch�
one could follow the approach taken by WebFind and simply locate the personal
homepage of the author in order to �nd a link to the paper�

In a follow�up experiment� we tried to determine the number of papers we could
�nd using Ahoy�� �rst searching for the personal homepage of one of the authors and
then locating the link to the relevant article manually� The results are summarized
in table ����

Of the �� papers checked with Paper Mate� only � included the full �rstnames
�instead of the initials only� of the authors �Ahoy� currently requires a �rstname� �
the remaining ��� of the existing citations were not suitable for Ahoy�� Of these �
references� Ahoy� always found a personal homepage for at least one of the authors� if
not all of them� The input to Ahoy� was only the given �rst� and lastname� since no
institutional information was present in the citations� By following links from these
homepages� we were than able to manually locate � papers� including one that had
not been found before when using Paper Mate�

Although over half of the personal homepages we found featured direct or indirect
links to the corresponding articles� the success of such a resource discovery approach
using best��rst link traversal �as inWebFind� remains questionable� given the number

�� Beyond Ahoy� Using DRS in other domains

of indirect links to follow
 and the increasing use of graphics and imagemaps for such
links� However� using Ahoy� as an orthogonal information source in the current Paper
Mate system might be a promising approach to further increase its coverage� as well
as providing helpful information �in form of the author�s homepage� in case a search
should fail�

��� Jokes

Our �nal example tries to apply the concept of DRS in a very di�erent domain�
While Paper Mate�s academic papers were conceptually very close to Ahoy��s per�
sonal homepages� our last domain� online jokes� are hardly found on the personal
homepages of researchers�
How often have you found yourself in the situation where you just recently heard

this great joke but could not remember the punch line anymore% Simply enter some
�distinctive� keywords� together with some longer phrase that you still remember�
and Joker�� our DRS�System in the on�line joke domain� will �nd the full text of the
almost forgotten joke for you�

	���� Description of the Joke domain

We begin again by examining our standard DRS�Set characteristics from table ���
on page ���

� Availability� The simplest way to share jokes on the Web is as simple text
�le or as plain HTML document� Both formats can be indexed by standard
Web indices to form Joker��s base reference set� Only few of the larger reposito�
ries o�er database entries� which are usually not indexed by traditional search
services�

� Focused attention�In our case� the goal is to �nd the exact text of an almost
forgotten joke� Although a similar scenario would be possible� where users
would search for new jokes in a certain category� this would not �t into our
DRS framework�

� Strong cohesion� Although it seems hard to analyze the full text of a docu�
ment in order to determine whether or not it constitutes a joke� our experiments
show that relative simple heuristics� together with the Web�s richness of infor�
mation� can make identi�cation of these pages fairly straightforward�

� Large cardinality�Joke pages are typically maintained by individuals who like
to share their favorite laughs with others on the web� Many maintainer ask for
new jokes sent to them via email� and try to post new entries every so often�

	Two of the personal homepages were pointing to the homepage of the authors� research group�
which in turn pointed to a repository of technical articles�

	�� Jokes ��

Figure ���� Joker� Search Form� The user is asked for a prominent phrase and additional
keywords of the joke she is trying to �nd� Although Joker� accepts searches
featuring only keywords or only a phrase� using both input �elds together allows
highest precision�

� Widely dispersed� Very few archives feature more than couple of hundred
jokes� more often only one or two dozens�

Jokes usually appear on HTML pages or simple text pages �without any HTML
markup�� Some pages feature a single joke� but more often a number of jokes are
found listed on a single page� separated by HTML markup �paragraphs� list elements�
or text elements �horizontal lines� numbers� etc��� If Joker� can �nd the full text of
the desired joke on a page by itself� returning this reference should be su�cient�
However� simply returning a reference to a page containing the desired joke next to
tens or hundreds of others is not enough � in this case the system has to extract the
relevant part of the page only�

�� Beyond Ahoy� Using DRS in other domains

Figure ��� Joker� Results Screen� In case Joker� was able to �nd one ore more doc�
uments featuring the desired joke� it displays its full text those together with
a brief description of its source �i�e�� the title and URL of the document that
contained the joke��

	���� Joker�
 A Case study

User Interface

The search form for Joker� is shown in �gure ���� The user supplies preferably a
distinctive phrase �or part of it� of the joke she is trying to �nd� together with a
number of words that appear in the joke� Using a fairly uncommon phrase of the
joke� together with any unusual words used� increases the chances of �nding the
correct joke�

After updating the user of the search progress� Joker� �nally lists the full text of
each joke that it found� together with a link to the page it found this joke on �see
�gure ��
� In case it was unable to extract the full text properly� it gives a link to the
page only� together with an appropriate message� Joker�� too� can return a nothing
found� answer�

	�� Jokes �	

Base Reference
Source

Analysis &
Classification

Heuristic Filter

Bucketing

Filtering

Information
Sources

Results

References
Download

User Query

Full-text
Analysis

Promising references available

Figure ���� Joker� Control Flow� After sending its two queries to the corresponding
search services �the MetaCrawler and AltaVista�� the returned references are
analyzed and sorted� Any promising references are downloaded and their full
text searched for sections or paragraphs containing the keywords and phrase
speci�ed by the user� Any such section is extracted and a corresponding entry
is created� which can then be displayed to the user�

Control Flow

The main problem of searching for jokes is the fact that they often contain very
common words� When using a query to a standard search engine� a request featuring
common words can easily result in a very large answer set� Although we like to
maximize Joker��s recall� we will have to take care not to formulate a too general
query� Instead� we want to make sure that our base reference set contains a large
number of jokes�pages� featuring the desired words� and not just regular pages�

Joker� tries to provide a slightly focused query by adding a number of so called
joke words� to the user supplied keywords and phrases� Currently� three of these
words are used� joke�� fun�� and humor�� although this might unnecessarily
biases Joker� to �nd predominantly jokes in English� Joker� uses a query to the
MetaCrawler� as well as an advanced query to AltaVista� The former query simply

�� Beyond Ahoy� Using DRS in other domains

requires all keywords� plus any of the joke words�� and groups the words of the
phrase together� The latter query additionally requires any of the joke words� to
appear in the URL or title of the document �thus having a higher chance of �nding
a joke�pages���
Once all references have been returned� Joker� sorts them according to the number

of keywords in title� snippet or URL� if a phrase match in title or snippet could be
found� and if any joke words� appear in the title or the URL of the document�
Then� similar to the Paper Mate system� each promising reference is downloaded and
the full text analyzed�
On each downloaded page� Joker� tries to isolate the piece of text containing the

relevant keywords and phrase in order to build a joke� reference containing the full
text of the joke together with some information about the page it was found on� In
case it was unable to successfully extract the full text� but found all relevant parts of
the joke� it will create a reference to the corresponding document only� so that the
user has a chance to manually search for the desired joke�
Finally� when enough joke� references have been extracted��� or no more pages

can be downloaded� Joker� displays the list of extracted jokes to the user� as shown
in �gure ��
� However� if Joker� was unable to extract any joke� any available links
to promising pages are shown instead�

	���� Experiments

In our brief experiment� we tried to asses if our simple implementation of a DRS�
System would prove su�cient in a highly unstructured domain such as online jokes�
The idea was to take a list of jokes that are known to be available online and try to
�nd the full text using Joker��

Experimental Setup

With the help of fellow students and professors in the Softbots group at the University
of Washington we compiled a list of �� jokes� Every joke had either reached one or the
other participant via email or had been found on the Web� For each joke� we asked
to supply a phrase� together with a number of keywords� The obvious bias in our
experiments� the selection of the phrase and keywords� could be eliminated by using
queries that were posed by online users� once the service would be publicly accessible�
However� in order to get a qualitative result� this test set should be su�cient�

Experimental Results

Joker� was able to �nd the full text of �� out of the �� jokes� with one of them being a
variation of the original joke �only some proper names had been changed�� Although
these results are not su�cient evidence for the recall � or precision � of the service� nor

�
Similar to Paper Mate� Joker� tries to 	nd a small number of identical references before ending
the search� in order to increase its chances of �getting it right��

	�� Summary � Conclusions ��

do we have any data on how existing services can be used to �nd these jokes� our
experiment at least demonstrates feasibility of our approach�

��� Summary � Conclusions

DRS has shown to be an e�ective IR tool in domains other than personal home�
pages� With two simple� �� day e�orts� we were able to provide two high quality
search services using our generic DRS architecture� assembling a large reference set
from standard sources� augmenting these with additional information� using heuris�
tics to sort and �lter� and providing �exible display methods for returning usable
information even in case of failure� Although both prototypes used only minimal
mechanisms in each of the areas and did not investigate the possibility of learn�
ing in these domains� our results suggest that �elded systems could show the same
pro�ciency in their respective domains as the current Ahoy� system�

�� Beyond Ahoy� Using DRS in other domains

� Conclusions and Future Work

	�� Summary � Conclusions

This thesis described an attempt at a fully implemented system that satis�es the
increased expectations towards an e�ective information retrieval system on the Web�
The technology used in current Web Search Services like Directories or Indices has
been developed long before the recent success of the World Wide Web� Web Direc�
tories� using techniques of manual indexing that work well for only moderately fast
growing �elds� such as Yellow Pages or a library� cannot keep up with the full size of
the rapidly expanding Web� Indices� using techniques developed to maximize recall
on often fairly static datasets� often feature comprehensiveness beyond usefulness�
Using intelligent agents that allow users to delegate time consuming� tiresome tasks�
we can create systems that reuse existing services and o�er a functionality that is
more than the sum of its parts�
Our work on DRS and the prototype systems� Ahoy�� Paper Mate and Joker��

contributed to the �eld of Information Retrieval in a number of ways� This thesis

� demonstrated the feasibility of providing high accuracy without sacri�cing cov�
erage� even in highly unstructured domains such as the World Wide Web� The
Ahoy� system achieves a remarkable performance when compared to standard
search services� showing more than twice the accuracy of its closest competitor�
while still o�ering the largest coverage�

� developed a domain�independent architecture that works in a variety of domains�
enabling the rapid prototyping of simple� yet powerful prototypes� Using the
general DRS architecture� we were able to quickly construct two simple DRS�
Systems in di�erent domains� Joker� and Paper Mate� both o�ering high accu�
racy combined with high coverage on the available test sets�

� proposed a novel way of resource location on the Web� by learning about the
structure underlying a speci�c domain� In one experiment� Ahoy� was able to
�nd nine percent more references than its closest competitor by using its URL
extraction and generation methods�

� examined simple machine learning techniques and their e�ects on retrieval
performance� by comparing three di�erent strategies for resource ordering in
Ahoy��s URL learning module� Using the Laplace accuracy� the Ahoy� system is

� Conclusions and Future Work

able to increase the e�ectiveness of its direct search feature by a factor of ��
compared to unsorted URL generation�

But our work on DRS�Systems has only just begun� As Etzioni puts it� we start
out with something useful� and then promise that we will add intelligence afterwards�
�Etz	��� After having demonstrated the feasibility of our concept� future work in the
�eld of DRS could lead to new insights into the nature of the Web and the retrieval
of information from large� distributed full�text databases�

	�� Future Work

DRS�Systems are positioned advantageously as publicly available Web search ser�
vices� Without trying to compete with large commercial services like Lycos or
AltaVista� they can still attract a signi�cantly larger amount of users than other
academic Web prototypes� With the data available of more and more users using a
�elded DRS�System� several future work areas open up�

���� Extending the functionality of existing DRS�Systems

Although the existing systems already exhibit a satisfactory performance� many
things are still far from perfect� Extending the capabilities of existing implemen�
tations would not only make these services more attractive to the user� but also
increase the amount of data available for experiments � an important advantage of
�elded systems�

Extending Ahoy��s query capabilities

The experiments in the academic paper domain have shown that in a lot of cases�
the full name of a person might not be known� Extending Ahoy� to handle �rstname
initials would not only attract more users� but also make it possible to use it as an
orthogonal reference source in Paper Mate� Using additional� advanced query features
of popular Web indices it would even be possible to search for the lastname only� as
long as institutional information is available�

Publicly elding Paper Mate and Joker�

Before o�ering the services of Paper Mate and Joker� to the public� these simple proto�
types would need a more robust implementation� Including more Web indices such as
HotBot or Infoseek could increase the number of high quality base references used in
each system �compared to the fall�back set obtained through the MetaCrawler�� Ad�
ditional orthogonal sources� such as university wide magazine and journal databases�
or even Ahoy�� could extend Paper Mate to augment a search with the names of ad�
ditional authors� perform title correction� provide the institutional a�liation of the
authors� and allow keyword searches for a more general topic� In case of a failed

��� Future Work ��

search� Paper Mate could o�er the personal homepages of the authors and their in�
stitutions� Joker� could for example pro�t from including a number of large jokes
repositories into its base reference set� Finally� both systems could use the concept
of a URL Learner to further increase their coverage�

Field additional DRS�Systems

As outlined in section ������ DRS�Systems could be implemented in a number of
other domains� This could not only con�rm the design of the generic framework� but
also add useful conceptual additions to the existing architecture�

���� Extending the generic DRS framework

The current DRS framework is very simple� Using data from the �elded prototypes�
many components of the architecture could be improved or generalized� A number
of research areas suggest themselves in this context�

Combining heterogeneous information sources

Although the process of cross �ltering� where we combine the information of avail�
able orthogonal information with the information coming from the base reference
set� resembles a database join�� and has been widely studied in the context of het�
erogenous information sources �i�e�� Levy�s Information Manifold �KLSS	���� we have
to be cautious when using unstructured information sources such as Web indices or
directories�
With these Web resources� any join between two result sets can only be of proba�

bilistic nature� since there is no guarantee that the results of a query are necessarily
related to the concept searched for��

Instead of explicitly developing an algorithm for the respective combination of
information sources used in each system� a declarative semantic could be introduced
in order to characterize each orthogonal information source and then use a generic
mechanism to combine the results� no matter what sources are combined in a speci�c
domain�

Minimizing false hypotheses

Further investigating the e�ects of di�erent statistical measures to rank existing
general hypotheses could signi�cantly improve the performance during the direct
search of a DRS�System� Also� with more and more hypotheses acquired per site� we

�A join is a binary operation of relational algebra� combining two sets that share common 	elds
while enforcing equality on those 	elds that appear in both sets� See any introductory database
textbook� such as �KS����

�This is both due to shortcomings of the query language and the full text nature of standard search
indices�directories�

�� Conclusions and Future Work

need to have a method of pruning unsuccessful hypotheses� as well as preventing the
DRS�System from relearning them�

Cross domain learning

Although Ahoy� already uses the concept of cross domain learning� its e�ects are not
yet understood� In the experiment described on page

� we only used information
that was directly recorded at each site� Further experiments would be necessary
to examine the bene�ts of having additional� global information available in case a
particular hypothesis has rarely been used at a certain site� This could also clarify
how to connect local and global statistics to form a single con�dence value

Learning domain features

While current DRS�Systems have to be manually tuned in order to achieve optimal
feature analysis� future systems could examine the use of machine learning techniques
to gradually improve an initial set of heuristics over time� Using direct user feedback
i�e�� the user explicitly labels a returned reference as incorrect or correct� a DRS�
System could revise suboptimal results and update its feature detection algorithm as
new features become relevant�

Bibliography

�AFJM	�� R� Armstrong� D� Freitag� T� Joachims� and T� Mitchell� Webwatcher�
A learning apprentice for the world wide web� In Working Notes of the
AAAI Spring Symposium
 Information Gathering from Heterogeneous�
Distributed Environments� pages ����� Stanford University� �		�� AAAI
Press� To order a copy� contact sss(aaai�org�

�Aha� David Aha� David Aha�s list of machine learn�
ing and case�based reasoning home pages� See
http���www�aic�nrl�navy�mil��aha�people�html�

�BDH�	�� C� Mic Brown� Peter B� Danzig� Darren Hardy� Udi Manber�
and Michael F� Schwartz� The Harvest information discovery
and access system� In Proceedings of the Second International
World Wide Web Conference� pages
���

�� �		�� available from
ftp�$$ftp�cs�colorado�edupubcs$techreports$schwartz$Harvest�Conf�ps�Z�

�BDH�	�� Mic Bowman� Peter Danzig� Darren Hardy� Udi Manber� Mike
Schwartz� and Duane Wessels� The Harvest homepage broker� �		��
See the �le afs�transarc�com�public�trg�Harvest�demo�html on
http���harvest�transarc�com��

�Big	
� BigFoot Partners L�P� Welcome to bigfoot � bigfoot homepage� �		�� 	
�
See http���www�bigfoot�com��

�BL�	� Tim Berners�Lee� Uniform resource locators �urls�� March �	�	� See
http���www�w��org�pub�WWW�History������proposal�html�

�BM��� D�C� Blair and M�E�Maron� An evaluation system of retrieval e�ective�
ness for a full�text document retrival system� C� ACM� ��������	��		�
�	���

�Bra	�� R� Brachman� Reducing� classic to Practice� Knowledge Represen�
tation Theory Meets Reality� In Proc� �rd Int� Conf� on Principles of
Knowledge Representation and Reasoning� October �		��

�Bro	�� R� Brooks� Intelligence without representation� Arti�cial Intelligence�
�
��������	���	� �		��

�� Bibliography

�BS	�� Christine L� Borgman and Susan L� Siegfried� Getty�s Synonametm

and its cousins� A survey of applications of personal name�matching
algorithms� Journal of the American Society for Information Science�
���
����	��
�� �		��

�BS	�� Marko Balabanovi)c and Yoav Shoham� Learning information retrieval
agents� Experiments with automated web browsing� In Working Notes
of the AAAI Spring Symposium
 Information Gathering from Heteroge�
neous� Distributed Environments� Stanford University� �		�� AAAI Press�

�Bus��� V� Bush� As we may think� Atlantic Monthly� �	��� See the �le
�duchier�misc�vbush�vbush�html on http���www�isg�sfu�ca��

�Cai	�� Robert Cailliau� A little history of the world wide web� �		�� See
http���www�w��org�pub�WWW�History�html�

�CB	�� Peter Clark and Robin Boswell� Rule induction with CN�� some recent
improvements� In Machine Learning � EWSL��� Proceedings of the Eu�
ropean Working Session on Learning�� pages �������� Porto� Portugal�
March �		��

�CFM�	
� Mark Craven� Dayne Freitag� Andrew McCallum� Tom Mitchell� Kamal
Nigam� and Choon Yang Queck� Learning to extract symbolic knowledge
from the World Wide Web� In Proceedings of the ��th International
Conference on Machine Learning� �		
�

�CKPT	�� D� Cutting� D� Karger� J� Pedersen� and J� Tukey� Scatter$gather� A
cluster�based approach to browsing large document collections� In ��th
Annual Int�l SIGIR�� �		��

�Cle��� C� W� Cleverdon� The testing and evaluation of the operatin ge�cientcy
of the intellectual stages of information retrieval systems� In P� Atherton�
editor� Int� Conf� on Classi�cation Research� Munksgaard� Copenhagen�
�	���

�CSO	�� Hsinchun Chen� Chris Schu�els� and Richard Orwig� Internet categoriza�
tions and search� A self organizing approach� Journal of Visual Commu�
nication and Image Representation�
����������� �		��

�DEC	�a� DEC� The AltaVista search engine homepage� �		��
http���altavista�digital�com��

�Dec	�b� John December� List of homepage providers� �		��
See the �le cmc�info�culture�people�lists�html on
http���www�december�com��

�Dei	�� Peter Deitz� HouserNet� homepage repository� �		�� See
http���www�housernet�com��

Bibliography �	

�DEW	
� R� Doorenbos� O� Etzioni� and D� Weld� A scalable comparison�shopping
agent for the World�Wide Web� In Proc� Autonomous Agents� pages
�	���� �		
�

�DoCS	�� University of California Riverside Department of Computer Sci�
ence� OKRA directory service� �		�� Out of Service� See
http���okra�ucr�edu�okra��

�Dou	
� DoubleClick� Inc� Internet Address Finder� �		
� See
http���www�iaf�net��

�Eic	�� David Eichmann� Ethical web agents� In Proceedings of the Second
International World Wide Web Conference ��
 Mosaic and the Web�
Chicago� IL� �		��

�ES	�� Oren Etzioni and Richard Segal� Softbots as testbeds for machine learn�
ing� In Working Notes of the AAAI Spring Symposium on Knowledge
Assimilation� pages ������ �		��

�Etz	�� O� Etzioni� Moving up the information food chain� softbots as informa�
tion carnivores� In Proc� ��th Nat� Conf� on AI� �		�� available from
http���www�cs�washington�edu�homes�etzioni��

�EW	�� O� Etzioni and D� Weld� A softbot�based interface to the Internet� C�
ACM� �
�
��
���� �		��

�EW	�� Oren Etzioni and Daniel Weld� Intelligent agents on the Internet� Fact�
�ction� and forecast� IEEE Expert� ����������	� �		��

�FG	
� S� Franklin and A� Graesser� Is it an agent� or just a program%� A
taxonomy for autnonomous agents� In J�P� Mueller� M�J� Wooldridge�
and N�R� Jennings� editors� Intelligent Agents III� Agent Theories� Ar�
chitectures� and Languages� ECAI �� Workshop �ATAL� Proceedings�
Budapest� Hungary� ����� Aug� ��� pages ������ Springer�Verlag�
Berlin� Germany� �		
� See the �le �franklin�AgentProg�html on
http���www�msci�memphis�edu��

�Gen	
� M� Genesereth� editor� Proceedings of the Sixth Interna�
tional WWW Conference� Santa Clara� CA USA� �		
� See
http���www�conf�slac�stanford�edu�index�html�

�Gib	�� William Gibson� Neuromancer� Ace Books� �rd edition� �		��

�Goy	
� Ambuji Goyal� The promise of information technology� June �		
� UW�
CSE Colloquium� June �th �		
�

�� Bibliography

�HBML	�� Kristen Hammond� Robin Burke� Charles Martin� and Steven Lytinen�
FAQ �nder� A case�based approach to knowledge navigation� InWorking
Notes of the AAAI Spring Symposium
 Information Gathering from Het�
erogeneous� Distributed Environments� pages �	�
�� Stanford University�
�		�� AAAI Press� To order a copy� contact sss(aaai�org�

�Hot	�� Hotbot� The hotbot search engine homepage� �		��
http���www�hotbot�com�

�Hot	
� Hotbot� Altavista is history� Wired Magazine� ��
������ July �		
�

�Hoy	�� Rhese S� Hoylman� People Pages� homepage repository� �		�� See
http���www�peoplepage�com��

�Inf	�� Infoseek Inc� Infoseek search engine homepage� �		��
http���www�infoseek�com�

�Inf	
� Infoseek Inc� Ultraseek search engine homepage� �		
�
http���ultra�infoseek�com�

�Int	
� Internet Literacy Consultantstm� ILC glossary of internet terms� �		��
�		
� See the �le files�glossary�html on http���www�matisse�net��

�Joh	
� W� Lewis Johnson� editor� Proceedings of the First International Con�
ference on Autonomous Agenst� ACM press� February �		
�

�Kay	�� Alan Kay� User interface� A personal view� In Brenda Laurel� editor�
The Art of Human Computer Interface Design� pages �	����
� Addison�
Wesley� �		��

�KLSS	�� T� Kirk� A� Levy� Y� Sagiv� and D� Srivastava� The Information Mani�
fold� In AAAI Spring Symposium
 Information Gathering from Hetero�
geneous� Distributed Environments� pages ���	�� �		��

�Knu
�� Donald E� Knuth� The Art of Computer Programming� volume ��
Addison�Wesley� Reading� Massachusetts� �	
��

�Kos	�a� Martin Koster� Guide for robot writers� �		�� See the �le
mak�doc�robots�guidelines�html on http���www�webcrawler�com��

�Kos	�b� Martin Koster� A standard for robot exclusion� �		�� See the �le
mak�doc�robots�norobots�html on http���www�webcrawler�com��

�KS	�� Henry F� Korth and Abraham Silberschatz� Database System Concepts�
�nd edition� McGraw�Hill� �		��

�KSC	�� Henry Kautz� Bart Selman� and Michael Coen� Bottom�up design of
software agents� C� ACM� �
�
���������� �		��

Bibliography ��

�KWD	
� N� Kushmerick� D� Weld� and R� Doorenbos� Wrapper Induction for
Information Extraction� In Proc� ��th Int� Joint Conf� on AI� �		
�

�Lak	
� Matthew Lake� Search engine shootout� PC Computing� August
�		
� See the �le pccomp�interdot�intermar�web�srch�html on
http���www�zdnet�com��

�Lan	�� Ken Lang� NewsWeeder� Learning to �lter netnews� somewhere� ������
�		��

�Leb� Alexander Lebedev� Best search engines for �nding scienti�c information
in the Net� See http���www�chem�msu�su�eng�comparison�html�

�Lot	
� Mark Lottor� Internet domain survey� �		
� See the �le
zone�report�doc on http���www�nw�com��

�LRO	�� A� Levy� A� Rajaraman� and J� Ordille� Query�answering algorithms for
information agents� In Proc� ��th Nat� Conf� on AI� �		��

�Lyc	�� Lycos� Inc� Lycos Internet Directory homepage� �		��
http���a�z�lycos�com�

�MCF�	�� Tom Mitchell� Rich Caruana� Dayne Freitag� John McDermott� and
David Zabowski� Experience with a learning personal assistant� C� ACM�
�
�
�����	�� �		��

�ME	�� Alvaro E� Monge and Charles P� Elkan� Integrating external information
sources to guide worldwide web information retrieval� Technical report�
Computer Science and Engineering Department� University of Calfornia�
San Diego� �		�� See http���dino�ucsd�edu����

�Mel	
� Melee Inc� Melee�s indexing coverage analysis �MICA�� �		���		
� See
the �le mica�index�html on http���www�melee�com��

�Mon	
� Louis Monier� Talkback� AltaVista CTO responds� March �		
� See
http���www��zdnet�com�anchordesk�talkback�talkback �����html�

�NCS	
� Glossary for ncsa mosaic and the world wide web users� July �		
�
See the �le SDG�Software�Mosaic�Glossary�GlossaryTable�html on
http���www�ncsa�uiuc�edu��

�Nib�
� Tim Niblett� Constructing decision trees in noisy domains� In Progress
in Machine Learning �Proceedings of the �nd European Working Session
on Learning�� pages �
�
�� Wilmslow� UK� �	�
�

�Pal� Bruce Palmer� Search engine comparisons around the web� See the �le
�bwp��isearch��html on http���jan�ucc�nau�edu��

�� Bibliography

�Pau	
� Kathryn Paul� Ongoing search engine analysis� �		
� See
http���burns�library�uvic�ca�searchengineanalysis�html�

�PDEW	
� M� Perkowitz� R� Doorenbos� O� Etzioni� and D� Weld� Learning to
understand information on the Internet� An example�based approach� J�
Intelligent Information Systems� �		
� To appear�

�Pet	�� Charles J� Petrie� Agent�based engineering� the web� and intelligence�
IEEE Expert
 Intelligent Systems � their Applications� pages ����	� De�
cember �		��

�Pik	
� John Pike� Talkback� Shocked by search engine indexing� March
�		
� See the �le anchordesk�talkback�talkback�������html on
http���www��zdnet�com��

�Pin	�� Brian Pinkerton� Finding what people want� Experiences with
the WebCrawler� In Proceedings of the Second International
World Wide Web Conference� Chicago� IL� �		�� See the
�le SDG�IT���Proceedings�Searching�pinkerton�WebCrawler�html

on http���www�ncsa�uiuc�edu��

�PMB	�� Michael Pazzani� Jack Muramatsu� and Daniel Billsus� Syskill � We�
bert� Identifying interesting Web sites� In Proceedings of the Thirteenth
National Conference on Arti�cial Intelligence and the Eighth Innovative
Applications of Arti�cial Intelligence Conference�� volume �� pages ������
Portland� OR� USA� August �		��

�PS	�� Anandeep S� Pannu and Katia Sycara� Learning text �ltering preferences�
In Symposium on Machine Learning And Information Access� AAAI �
Symposium Series� March �		��

�Sal�
� Gerard Salton� Automatic Information Organization and retrieval�
McGraw�Hill Book Company� �	�
�

�Sal�	� Gerard Salton� Automatic Text Processing
 The Transformation� Anal�
ysis� and Retrieval of Information by Computer� Addison Wesley� �	�	�

�SE	�� Erik Selberg and Oren Etzioni� Multi�Service Search and Com�
parison Using the MetaCrawler� In Proc� �th World Wide
Web Conf�� pages �	������ Boston� MA USA� �		�� See
http���www�cs�washington�edu�research�metacrawler�

�SLE	
� J� Shakes� M� Langheinrich� and O� Etzioni� Ahoy� the home page �nder�
In Proc� �th World Wide Web Conf�� Santa Clara� CA USA� �		
� See
http���www�cs�washington�edu�research�ahoy�

�Sof� Sleepycat Software� The Berkeley Database� See the �le �db�index�html
on http���mongoose�bostic�com��

Bibliography ��

�The� The Intelligent Transportation Systems Program� netAddress book
of transportation professionals� See the �le �dhb�TRANSPORT�NAB� on
http���dragon�princeton�edu��

�Tra	
� TradeWave Corporation� Net Citizens� homepage repository� �		���		
�
See http���www�einet�net�galaxy�Community�Net�Citizens�html�

�Ven	�� Alladi Venkatesh� Computers and other interactive technologies for the
home� C� ACM� �	������
���� �		��

�WE	�� Dan Weld and Oren Etzioni� The �rst law of robotics �a call to arms��
In Proc� ��th Nat� Conf� on AI� pages ��������
� �		��

�web	�� The Merriam�Webster Dictionary� Merriam�Webster� Inc�� �		��

�Wel	
� Daniel S� Weld� Software agents that reason about information content
� quality� In Proceedings of the �rst international conference on Au�
tonomous Agents� pages �
���
�� �		
�

�Who	
� WhoWhere% Inc� WhoWhere% E�mail Addresses homepage� �		���		
�
See http���www�whowhere�com��

�Win	�� Nick Wing�eld� Engine sells results� draws �re� June �		�� See
http���www�news�com�News�Item�	�	����	�html�

�Yah	�� Yahoo� Inc� Yahoo� homepage� �		�� http���www�yahoo�com�

�Yan	
� Jerry Yang� Yahoo� �nding needles in the internet�s haystack� In Archi�
tects of the Web� chapter �� John Wiley � Sons� �		
� Online version at
http���www�architectsoftheweb�com�jw�yang��html�

�ZEMK	
� Oren Zamir� Oren Etzioni� Omid Madani� and Richard M� Karp� Fast
and intuitive clusturing of web documents� In Submitted to KDD���
�		
�

�� Bibliography

Appendix

A Glossary

The following is a subset of the ILC Glossary of Internet Terms �Int	
�� featuring
many of the technical terms used in this document�

Browser A Client program �software� that is used to look at various kinds of Internet
resources�

See Also� Client� URL� WWW� Netscape� Mosaic� Home Page �or Homepage�

CGI �Common Gateway Interface� � A set of rules that describe how a Web Server
communicates with another piece of software on the same machine� and how the
other piece of software �the CGI program� talks to the web server� Any piece
of software can be a CGI program if it handles input and output according to
the CGI standard�

Usually a CGI program is a small program that takes data from a web server
and does something with it� like putting the content of a form into an e�mail
message� or turning the data into a database query�

You can often see that a CGI program is being used by seeing cgi�bin in a URL�
but not always�

See Also� cgi�bin� Web

cgi�bin The most common name of a directory on a web server in which CGI pro�
grams are stored� The bin part of cgi�bin is a shorthand version of binary�
because once upon a time� most programs were refered to as binaries� In real
life� most programs found in cgi�bin directories are text �les � scripts that are
executed by binaries located elsewhere on the same machine�

See Also� CGI

Client A software program that is used to contact and obtain data from a Server
software program on another computer� often across a great distance� Each
Client program is designed to work with one or more speci�c kinds of Server
programs� and each Server requires a speci�c kind of Client� A Web Browser
is a speci�c kind of Client�

See Also� Browser� Server

��� Glossary

Cyberspace Term originated by author William Gibson in his novel Neuromancer
�Gib	��� The word Cyberspace is currently used to describe the whole range of
information resources available through computer networks�

Domain Name The unique name that identi�es an Internet site� Domain Names
always have � or more parts� separated by dots� The part on the left is the
most speci�c� and the part on the right is the most general� A given machine
may have more than one Domain Name but a given Domain Name points to
only one machine� For example� the domain names�

matisse�net

mail�matisse�net

workshop�matisse�net

can all refer to the same machine� but each domain name can refer to no more
than one machine�

Usually� all of the machines on a given Network will have the same thing as
the right�hand portion of their Domain Names �matisse�net in the examples
above�� It is also possible for a Domain Name to exist but not be connected
to an actual machine� This is often done so that a group or business can have
an Internet e�mail address without having to establish a real Internet site� In
these cases� some real Internet machine must handle the mail on behalf of the
listed Domain Name�

See Also� IP Number

Finger An Internet software tool for locating people on other Internet sites� Finger
is also sometimes used to give access to non�personal information� but the most
common use is to see if a person has an account at a particular Internet site�
Many sites do not allow incoming Finger requests� but many do�

FTP �File Transfer Protocol� � A very common method of moving �les between
two Internet sites� FTP is a special way to login to another Internet site for
the purposes of retrieving and$or sending �les� There are many Internet sites
that have established publicly accessible repositories of material that can be
obtained using FTP� by logging in using the account name anonymous� thus
these sites are called anonymous ftp servers�

Gopher A widely successful method of making menus of material available over the
Internet� Gopher is a Client and Server style program� which requires that the
user have a Gopher Client program� Although Gopher spread rapidly across
the globe in only a couple of years� it has been largely supplanted by Hypertext�
also known as WWW �World Wide Web�� There are still thousands of Gopher
Servers on the Internet and we can expect they will remain for a while�

See Also� Client� Server� WWW� Hypertext

��	

hit As used in reference to the World Wide Web� hit means a single request from a
web browser for a single item from a web server� thus in order for a web browser
to display a page that contains � graphics� � hits would occur at the server� �
for the HTML page� and one for each of the � graphics�

emphhits are often used as a very rough measure of load on a server� e�g��
Our server has been getting ������� hits per month� Because each hit can
represent anything from a request for a tiny document �or even a request for a
missing document� all the way to a request that requires some signi�cant extra
processing �such as a complex search request�� the actual load on a machine
from � hit is almost impossible to de�ne�

Home Page �or Homepage� Several meanings� Originally� the web page that your
browser is set to use when it starts up� The more common meaning refers to
the main web page for a business� organization� person or simply the main page
out of a collection of web pages� e�g� Check out so�and�so�s new Home Page�

Another sloppier use of the term refers to practically any web page as a emph�
homepage� e�g� That web site has �� homepages and none of them are interest�
ing�

See Also� Browser� Web

Host Any computer on a network that is a repository for services available to other
computers on the network� It is quite common to have one host machine provide
several services� such as WWW and USENET�

See Also� Node� Network

HTML �HyperText Markup Language� � The coding language used to create Hy�
pertext documents for use on the World Wide Web� HTML looks a lot like
old�fashioned typesetting code� where you surround a block of text with codes
that indicate how it should appear� additionally� in HTML you can specify
that a block of text� or a word� is linked to another �le on the Internet� HTML
�les are meant to be viewed using a World Wide Web Client Program� such as
Netscape or Mosaic�

See Also� Client� Server� WWW

HTTP �HyperText Transport Protocol� � The protocol for moving hypertext �les
across the Internet� Requires a HTTP client program on one end� and an HTTP
server program on the other end� HTTP is the most important protocol used
in the World Wide Web �WWW��

See Also� Client� Server� WWW

Hypertext Generally� any text that contains links to other documents � words or
phrases in the document that can be chosen by a reader and which cause
another document to be retrieved and displayed�

��� Glossary

Internet �Upper case I� The vast collection of inter�connected networks that all use
the TCP$IP protocols and that evolved from the ARPANET of the late ���s and
early
��s� The Internet now �July �		�� connects roughly ������ independent
networks into a vast global internet�

internet �Lower case i� Any time you connect � or more networks together� you have
an internet � as in inter�national or inter�state�

See Also� Internet� Network

IP Number �Internet Protocol Number� � Sometimes called a dotted quad� A
unique number consisting of � parts separated by dots� e�g�

������������

Every machine that is on the Internet has a unique IP number � if a machine
does not have an IP number� it is not really on the Internet� Most machines
also have one or more Domain Names that are easier for people to remember�

See Also� Domain Name� Internet� TCP$IP

ISP �Internet Service Provider� � An institution that provides access to the Internet
in some form� usually for money�

See Also� Internet

Login Noun or a verb� Noun� The account name used to gain access to a computer
system� Not a secret �contrast with Password�� Verb� The act of entering into a
computer system� e�g� Login to the WELL and then go to the GBN conference�

See Also� Password

Mosaic The �rst WWW browser that was available for the Macintosh� Windows�
and UNIX all with the same interface� Mosaic really started the popularity of
the Web� The source�code to Mosaic has been licensed by several companies
and there are several other pieces of software as good or better than Mosaic�
most notably� Netscape�

See Also� Browser� Client� WWW

Netscape A WWW Browser and the name of a company� The Netscape �tm�
browser was originally based on the Mosaic program developed at the National
Center for Supercomputing Applications �NCSA��

Netscape has grown in features rapidly and is widely recognized as the best
and most popular web browser� Netscape corporation also produces web server
software�

���

Netscape provided major improvements in speed and interface over other browsers�
and has also engendered debate by creating new elements for the HTML lan�
guage used by Web pages � but the Netscape extensions to HTML are not
universally supported�

The main author of Netscape� Mark Andreessen� was hired away from the
NCSA by Jim Clark� and they founded a company called Mosaic Communica�
tions and soon changed the name to Netscape Communications Corporation�

See Also� Browser� Mosaic� Server� WWW

Network Any time you connect � or more computers together so that they can share
resources� you have a computer network� Connect � or more networks together
and you have an internet�

See Also� internet� Internet� Intranet

NNTP �Network News Transport Protocol� � The protocol used by client and server
software to carry USENET postings back and forth over a TCP$IP network�
If you are using any of the more common software such as Netscape� Nuntius�
Internet Explorer� etc� to participate in newsgroups then you are bene�ting
from an NNTP connection�

See Also� Newsgroup� TCP$IP� USENET

Node Any single computer connected to a network�

See Also� Network� Internet� internet

Password A code used to gain access to a locked system� Good passwords contain
letters and non�letters and are not simple combinations such as virtue
� A good
password might be�

Hot�����

See Also� Login

Port � meanings� First and most generally� a place where information goes into or
out of a computer� or both� E�g� the serial port on a personal computer is
where a modem would be connected�

On the Internet port often refers to a number that is part of a URL� appearing
after a colon ��� right after the domain name� Every service on an Internet
server listens on a particular port number on that server� Most services have
standard port numbers� e�g� Web servers normally listen on port ��� Services
can also listen on non�standard ports� in which case the port number must be
speci�ed in a URL when accessing the server� so you might see a URL of the
form�

gopher���peg�cwis�uci�edu������

��� Glossary

shows a gopher server running on a non�standard port �the standard gopher
port is
��� Finally� port also refers to translating a piece of software to bring
it from one type of computer system to another� e�g� to translate a Windows
program so that is will run on a Macintosh�

See Also� Domain Name� Server� URL

Server A computer� or a software package� that provides a speci�c kind of service to
client software running on other computers� The term can refer to a particular
piece of software� such as a WWW server� or to the machine on which the
software is running� e�g�� Our mail server is down today� that�s why e�mail isn�t
getting out� A single server machine could have several di�erent server software
packages running on it� thus providing many di�erent servers to clients on the
network�

See Also� Client� Network

TCP�IP �Transmission Control Protocol$Internet Protocol� � This is the suite of
protocols that de�nes the Internet� Originally designed for the UNIX operating
system� TCP$IP software is now available for every major kind of computer op�
erating system� To be truly on the Internet� your computer must have TCP$IP
software�

See Also� IP Number� Internet� UNIX

UNIX A computer operating system �the basic software running on a computer�
underneath things like word processors and spreadsheets�� UNIX is designed
to be used by many people at the same time �it is multi�user� and has TCP$IP
built�in� It is the most common operating system for servers on the Internet�

URL �Uniform Resource Locator� � The standard way to give the address of any
resource on the Internet that is part of the World Wide Web �WWW�� A URL
looks like this�

http���www�matisse�net�seminars�html

telnet���well�sf�ca�us

news�new�newusers�questions

The most common way to use a URL is to enter into a WWW browser program�
such as Netscape� or Lynx�

See Also� Browser� WWW

Web See� WWW

WWW �World Wide Web� � Two meanings � First� loosely used� the whole con�
stellation of resources that can be accessed using Gopher� FTP� HTTP� telnet�
USENET� WAIS and some other tools� Second� the universe of hypertext

���

servers �HTTP servers� which are the servers that allow text� graphics� sound
�les� etc� to be mixed together�

See Also� Browser� FTP� Gopher� HTTP� Telnet� URL� WAIS

�� Glossary

B The Ahoy� System	 Maintenance

� Troubleshooting

B�� Implementation Details

Ahoy� and other DRS�Systems discussed in this work have all been implemented in
the Perl� scripting language� Perl was invented by Larry Wall in �	�
 as a general
tool for parsing output of UNIX commands and generating simple reports� With
the new object oriented features in version ������ Perl moves from a simple scripting
language to become a serious programming language� which is especially suited for
rapid prototyping� Perl source code is read at runtime� compiled into byte code and
then interpreted� However� the Perl community already works on a project to provide
a compiler to machine code which would signi�cantly cut down execution time for
an application as large as Ahoy� �almost ������ lines of code� plus about ������ lines
of standard libraries� which are read and compiled everytime a search is started��

� Language� Perl�� patchlevel �

� Lines� ������

� Architecture� DEC OSF�

� Server� DEC Alpha ���Mhz� ���MB main memory� Andrew File System
�AFS�

B���� Main scripts
 searching� guessing and following

Ahoy� uses three main scripts to handle requests� nph�searching�cgi� the search�
ing� script� nph�guessing�cgi� the guessing� script� and nph�follow�cgi� the
following� script�
The following script is invoked everytime a user follows a link to a homepage

presented on Ahoy�s results page� It will record which URL the user followed� and
then send the user to the desired page by return a HTTP redirect command� This
data could be used for additional learning �currently not exploited by Ahoy��� but is
of only statistical value right now�

�Perl is architecture independent and runs on most UNIX and many non�UNIX �e�g�� DOS� Win�
dows� Mac OS� systems�

��� The Ahoy� System� Maintenance � Troubleshooting

The searching script is actually two scripts� a proxy script� nph�proxy�cgi �rst
checks the number of active searches on the machine and decides if enough resources
are available to start another search� If not it will ask the user to come back later�
otherwise it calls the real� search script� nph�ahoy�cgi� with the user de�ned query
values� The real search script then performs the search as described in the preceeding
chapters� up to the point where it either ends with a results page� or prompting the
user to select the servers to search further �in case the search failed and it found a
number of hypotheses to at the speci�ed institution��
The guessing script� nph�guessing�cgi forms the continuation of such a user

prompt� picking up where the initial search script stopped� by instantiating the rel�
evant hypotheses at the selected institution with the search parameters and directly
accessing the generated instantiated hypotheses� It either returns a result page similar
to the one the initial search script would have shown in case of a successful query� or
with another prompting for selecting yet another possible location� Thus� the user
can initiate a number of these directed searches in a row� each time invoking the
guessing script again� The guessing script should probably also have a proxy fron�
tend checking for the availability of resources� but the low usage number �� continued
search for every �� searches� made this a low priority during development��

B���� Managing multiple server

The Ahoy� system is designed to run on a number of servers concurrently� Although
every process runs only on a single server� each invocation of a script can be on
di�erent server� This is because all servers in the Ahoy� cluster are accessible through
a single DNS alias �ahoy�cs�� which randomly sends a user to one of the machines
in the cluster�
Because of this� all server need a common directory structure� so that continuation

script invocations on one machine can use data from searches that ran on other
machine� Also� all maintenance scripts have to be able to run on multiple machines�
In order to avoid multiple invocations of system wide scripts on di�erent machines�
one machine in the Ahoy� cluster is the designated main machine� This main machine
is the only one that runs system wide scripts that collate Web server statistics or
archive session directories�

B�� File List

The following is a list of �les and directories that constitute the Ahoy� system� See
also the �les MANIFEST and ROADMAP in the Ahoy� root directory ��root����

�root��

bin� Binaries used by the Ahoy� system

�Although the longer runtime of nph�guessing�cgi might consume more resources�
�The Ahoy� root directory is currently �afs�cs�home�ahoy��

B�� File List ���

doc� On�line Documentation
scripts� Ahoy� maintenance shell scripts
server� Web server related �les
system� Ahoy� system related �les �shared�
MACHINES Lists machines currently in the Ahoy� pool
MANIFEST File list
README Top Level information about on�line documentation
ROADMAP Directory Structure

�root��bin�

afssh Shell replacement to use with AFS
gzarchive Tool for archiving entire directories
gzlistarchive Lists archived directories
gzunarchive Entpacks archived directories �shared�

�root��doc�

HOWTO� Howto Guides
CODING How to make changes to the source code
DEBUG How to debug Ahoy�

HTSTATS Information about the Web Statistics package
METACRAWLER Information about Ahoy��s MetaCrawler interface
MODULES List of modules � brief descriptions
TROUBLESHOOTING How to solve problems with the Web Service
mc�command sample commandline to the MC as used by Ahoy�

mc�output��
� sample output of the MC as expected by Ahoy�

�root��doc�HOWTO�

HOWTO�Count hypotheses How many hypotheses does Ahoy� have
HOWTO�Create Institutions DB Adding a new institution or nickname
HOWTO�Deny access In case a particular site bombards Ahoy�
HOWTO�Install edit version Adding development versions
HOWTO�New Root Installing Ahoy� in a new location
HOWTO�New Server Adding a new machine
HOWTO�Setup�Environment UNIX packages needed to run Ahoy�

HOWTO�Troubleshooting System If the program dies or performs badly

�root��scripts�

server� Web server maintenance
system� System maintenance

�root��scripts�server�

crontab�server Crontab �le for every Ahoy� machine
crontab�system Crontab �le for main Ahoy� machine
change root�pl Changes default directories in scripts
check�server Is a Web server running
create crontab�pl Installs crontab �les
create new server root�pl Adds directory for new Ahoy� machine
restart�server Restarts Web server

��� The Ahoy� System� Maintenance � Troubleshooting

rotate�logs Rotates Web server logs
scavenge�old�logs Collates Web server logs accross multiple machines
start�server Starts Web server �if necessary�
stop�server Stops currently running Web server

�root��scripts�system�

logtdiff�pl Subscript for merge logs�pl

merge access logs Subscript for merge logs

merge logs Used by merge all server logs to merge logs
merge logs�pl Subscript for merge access logs

handle sess dirs Archives old session directories
merge all server logs Used by scavenge�old�logs

small update htstats Hourly Web statistics update
update htstats Nightly Web statistics update

�root��server�

archives� Holds archived server logs
root� Web server roots for each machine

�root��root�

access�conf�global Global access con�guration �le �shared�
httpd�conf�global Generic httpd con�guration �le �copied�
mime�types�global Global mime types �shared�
srm�conf�global Global mapping con�guration �shared�

�root��system�

CGI� Ahoy� program code �CGI scripts�
HTML� Ahoy� HTML documents
resources� Hypotheses� institutional DB� etc�
tools� Miscellaneous helper scripts

�root��CGI�

Ahoy� Ahoy� related sub�modules� See section B���� pp� ���
LWP� Additional Web library modules
WWW� General WWW sub�modules
nph�ahoy�cgi Main Ahoy� search script
nph�down�cgi Shows �Ahoy� is down� message
nph�follow�cgi Protocolls every answer URL the user follows
nph�guessing�cgi Continues direct Ahoy� search
nph�proxy�cgi Proxy script� blocks access if service overloaded
nph�searching�cgi Links either to nph�ahoy�cgi or nph�down�cgi
nph�status�cgi Shows status information on current searches

�root��system�HTML�

doc� FAQ and additional information
gif� Graphics
htstats� Web server statistics
sessions� Individual session directories

B�� On
line documentation ��	

index�html Points either to table�search�form or out�of�service
non�table�search�form�html Simple search from �no tables�
out�of�service�html Out of service message
robots�txt Blocks robots from indexing parts of Ahoy�
table�search�form�html Standard search form

�root��system�resources�

glimpse index command�txt How to build inst� DB
glimpse index update command�txtHow to update inst� DB

�root��system�tools�

add title Augments acquired hypotheses with server names
count hypos Counts total number of acquired hypotheses
deletefromDB file�pl Deletes entry from Berkeley DB �le
traverse�pl Generic module for traversing a directory
viewDB File�pl Lists content of Berkeley DB �le

B�� On�line documentation

The Ahoy� systems includes a number of on�line documentation �les �see �le list
above� that are reprinted here�� Please refere to the �lenames given underneath each
section title to locate them on�line�

B���� General Information

Filename� �root��README

Ahoy� The Homepage Finder

�		�� �		
 J�Shakes� M�Langheinrich� O�Etzioni

This directory contains the Sources for the Ahoy� Web Service� See the ROADMAP
�le in this directory for a description of the various subdirectories in this distribution�
The MACHINES �le in this directory lists the machines currently �
$	
� in the

Ahoy� system� and their tasks �i�e�� what crontab jobs are running on them�
See the �le TROUBLESHOOTING in the doc� subdir if you need quick help with

problems� See the DEBUG guide in the doc� directory� as well as corresponding HOWTO
guides in the doc�HOWTO� directory for more information about speci�c problems
with Ahoy�
See the CODING guide in the doc� directory for more information on how to edit

the Ahoy� sources�
If you have problems� please don�t hesitate sending me mail�

Marc Langheinrich

�The versions printed here have been marked up for easier reading # the original version are text
only�

��� The Ahoy� System� Maintenance � Troubleshooting

marclang�cs�washington�edu

marc�ub�uni�bielefeld�de

B���� Ahoy� Directory Guide

Filename� �root��ROADMAP

Ahoy� Roadmap

�		�� �		
 Marc Langheinrich

Main Overview

The following is a break�up of the major directories of the Ahoy� System� �i�e� the
sub�directories in this current directory�

�� CVS� � Version Control Information� See doc�CODING

�� bin� � Contains additional helper files for Ahoy�

� � or symbolic links to them �

�� development�

edit� � Contains sources for active development�

trial� � Contains sources for testing�

� doc� � Help � Documentation

HOWTO� � General Q�A�s

�� scripts�

server� � Scripts related to server upkeep�maintenance

� �run by all machine�

system� � System related scripts �run only by one machine�

�� server�

archives� � Where old server logs are stored

root� � Configuration� and Log�Files for each machine

�� system�

CGI� � Ahoy� System Software �called by httpd server�

HTML� � Document root of httpd server

resources� �

dicts� � words for insitution module

hypotheses� � where all hypotheses are stored

institutions� � contains institution DB �glimpse index�

tools� � Contains scripts for counting hypotheses� listing

� contents of db�files� etc� �i�e� �tools��

All directories are accessible via �afs�cs�home�ahoy�ahoy ��root��� although
they might reside on di�erent �lesystems and appear only as symbolic links under�
neath that directory�

B�� On
line documentation ���

Detailed Description of items ��������

�� development�
Here are links to the two alternative Ahoy� versions� The trial� version is
supposed to be a pre��elding version� for use inside the department only� The
edit� version is the one where �les are changed� bugs are tracked down� etc
etc� Only if the edit version is stable� one should copy the changed �les to the
release version�

See doc�CODING for more details�

�� scripts�
On all Ahoy� machines there is a constant need of daily upkeep� in order to en�
sure HTTP server availability and log�le analysis� As long as Ahoy� pages are
served by a separate Apache�Server� these scripts need to be installed as nightly
crontab jobs on all machines that are accessible via ahoy�cs�washington�edu����

Ahoy� scripts come in two �avours � �system� speci�c� and �server� speci�c�
Server speci�c scripts should be run on a machine by machine basis� and handle
each individual HTTP server running on each machine� System speci�c �le
should be run by one machine only and handle system wide tasks� like merging
access logs accross all machine into a single one� collecting statistics or cleaning
up session directories� If two server would both be executing some of these
scripts� they would de�nitely trip over each other and bad things would happen�

�a� server�

� check
server �
q�
Should be run every �� minutes or so� to ensure that the server is
up and running� In case of a problem� it will call restart�ahoy or
start�ahoy to re�initialize server�
It has to be run on the machine that should be checked and will
produce no output during normal operation when using the ��q� �ag�
This is handy for use as a crontab job� �No output means that a
server is running ok� Of course� if something goes wrong� it will show
an error message even when using the ��q� �ag�

� start
server �
q�
stop
server �
q�
restart
server �
q�
Starts� ends� or restarts the ahoy server respectively� Has to be run on
the machine where the server should be stopped� started or restarted�
Will produce no output during normal operation when using the ��q�
�ag� This is handy for use as a crontab job� �No output means that
the script went through ok� and the server is now started �or stopped
or restarted�� Otherwise it would� even ��q� mode� give an error msg

��� The Ahoy� System� Maintenance � Troubleshooting

� rotate
logs
Renames current access log and error log of current machine� and
gzips it� Restarts server to force creation of new log �les�

� scavenge
old
logs
This should be run each night just after rotate�logs has been called�
It will gzip the freshly rotated log �les of the machine it�s run on� and
move them to the central archive directory �see server�archive�

below�� where the system script merge all server logs �see below� will
merge them into a single access log �le for all Ahoy� servers�

� change root�pl
create new server root�pl
create crontab�pl
crontab�server
crontab�system
These scripts should be used to create a new directory for an added
Ahoy� machine� change root�pl should only be run before any server
directories are created �i�e� when starting anew in a whole new envi�
ronment�� in order to adjust the basic parameters in each script for the
ahoy default port and directories� �see doc�HOWTO�HOWTO�New Root��
Then create new server root�pl can be used to actually create a
fresh server subdirectory underneath the server�root� directory �see
doc�HOWTO�HOWTO�New Server�� Finally� create crontab�pl should be
called to automatically install a corresponding list of crontab jobs on
this machine� crontab�server and crontab�system contain the default
jobs installed on each machine and on the single machine that runs
�system��wide jobs�

�b� system�

� update htstats
Calls httpd�analyze with right parameters to update the monthly
Ahoy� access statistics� Should be run each night� in order to have
up to date data�

� small update htstats
Calls httpd�analyze for real quick access log update� This should be
run every hour or half an hour or so on the main machine �the one
receiving most of the hits�� to give an idea on momentarily perfor�
mance�

� merge all server logs
Collects all gzipped access and error logs for all machines and cre�
ates merged version of the access logs �see merge�logs�� Will not
merge error logs� Should be run before update htstats� �So that the
httpd analyzer crontab job always �nds some access log in the place
where it expects it to be� otherwise it will report no hits for the day�

B�� On
line documentation ���

� merge
logs �called by merge all server logs�
merge access logs �called by merge logs�
merge logs�pl �called by merge access logs�
Subscripts of merge all server logs�

� handle sess dirs
Handles all session directories up until yesterday� This should be
called at the end of the day �like ��pm or so� each night so that
the session dir of the day before gets stored away� Right now� it
will simply delete all session directories that are older than yester�
day� but eventually one could call a special data extraction script on
each session directory to gather some statistical data here� Deleting
only yesterdays logs� and this really late in the day helps to answer
fan�mail$bug�reports� which usually concern problems from the day
before�

�� server�
This directory contains all parts of Ahoy� that relate to keeping copies of the
HTTP server running and serving pages from the Ahoy� HTML tree�

�a� root�

This subdirectory contains a directory for each machine used in the ahoy
server pool� in the format �machine��port� Each of these contains in
turn a conf� and a logs� directory� where the server con�gurations �les
and logs are stored�

i� logs�
Holds access log� error log and the process ID �httpd�pid� of the
currently running server�

ii� conf�
Each Ahoy� server uses basically the same con�guration by sim�
ply using symbolic links to the global con�guration scripts in the
�root��server�root directory� However� the httpd�conf �le for
each con�guration has to be adjusted to feature the correct root�
directort for each machine� This is usually done automatically by the
server�installation scripts described above

�b� archives� �symbolic link to some large disk space��
Old Server logs are compressed and stored in a month$day subdirectory
structure by scripts$system$merge all server logs�

� system�
This directorie contains all �les needed for presenting and running Ahoy� queries�
i�e� the HTML�Files needed for providing the forms and help texts� the graph�
ics on the Ahoy� pages� the CGI�scripts that are called upon pressing �Submit�
on the forms� and� last not least� the libraries needed by the Perl�CGI scripts�

�� The Ahoy� System� Maintenance � Troubleshooting

�a� HTML�
Ahoy� uses two di�erent versions of its search page� one for table�aware
browser� and one non�table version�

table�search�form�html

non�table�search�form�html

In addition� an Out�Of�Service �le that can be substituted for the search
form via the index�html symbolic link� allows closing down Ahoy� for
public use �i�e� for updating�� Please make sure that you also re�link the
search script in system�CGI�� nph
search�cgi to the nph
down�cgi cript in
order to prevent people using external search forms �like the All�in�One�
search page� from issuing queries�

All additional documentation �like help pages or references� are kept in the
HTML�doc� subdirectory� All graphics are in the HTML�gif� subdirectory
�although they aren�t neccessarily gif �les�

�b� CGI�

Four main CGI scripts provide access to the Ahoy� system� They all start
with the string �nph�� in order disable bu�ering by the apache�server�

nph�status�cgi provides status information about currently running searches
on this machine �Symbolic link to nph
proxy�cgi� which checks for the
name of the script called in order to provide di�erent functionality�
See below��

nph�guessing�cgi continues search in case the user was asked to select the
sites to search�

nph�follow�cgi redirect�script that is called whenever someone follows a
link to a page found by Ahoy�

nph�search�cgi symbolic link pointing to the main entry script for searches�
This should point to one of the following �les�

nph�proxy�cgi Script that checks the current load of the Ahoy� system
and either continues with the nph
ahoy�cgi script� or presents an
�overload� message to the user� If called using the nph
status�cgi
link� it will simply give a status overview�

nph�ahoy�cgi real Ahoy� main script�

nph�down�cgi BlockOut script that displays down�message� Has to
be edited to match time and day mentioned in the text�

nph
ahoy�cgi and nph
guessing�cgi use Perl�modules in the form Ahoy��Modulename�
LWP��modulename and WWW��modulename� These modules are found in the
Ahoy�� LWP� and WWW� subdirectory� respectively�

i� Ahoy�
This subdirectory contains all Perl modules needed for Ahoy�� See the
�le MODULES in the doc� directory for more information about how

B�� On
line documentation ���

the code is divided into di�erent �les� Three subdirectories contain
various submodules�

Analyzer� contains modules for analyzing page content�
Buckets� contains modules for manipulating the Bucketing�

Table content�
Query� contains additional �les needed by the Query module�

ii� LWP�
This subdirectory contains additions to the standard Perl library
libwww which allow parallel Web access� These �les are part of the
Parallel User Agent package� See the �le homes�marclang�ParallelUA�
on the server http���www�cs�washington�edu��

iii� WWW�
This subdirectory contains a single additions to the standard Perl
library libwww allowing the use of the Berkeley DB �Sof� together
with the RobotRules module�

�c� resources�

Contains resources needed by the Ahoy� system� such as

dicts� contains extra keywords needed by the Inst
Manager
module�

institutions� Ahoy��s institutinal database �see the �le
HOWTO�Create Institutions DB in doc�HOWTO��

hypotheses� Ahoy��s general hypotheses�

�d� tools�

Contains additional scripts that are handy for administering Ahoy�

add title Augments hypotheses with server titles for nicer presentation
to the user �i�e� when she�s asked to make a choice where to continue
looking�� Currently run nightly by centauri�prime�

count hypos Counts the total number of �general� hypotheses in Ahoy��s
database �either globally� per zone or per domain��

viewDB File�pl Lists the content of a Berkeley DB �le�

B���� The Ahoy� machine cluster

Filename� �root��MACHINES

The Ahoy� machine cluster

�		
 Marc Langheinrich

The following machines are currently running part of the Ahoy� system� �see also the
server�root� subdirectory�

��� The Ahoy� System� Maintenance � Troubleshooting

draz�cs Main Ahoy� server� Runs system
wide jobs �use the *crontab �l*�
command to list� to merge server
logs accross servers and delete old
session directories�

additional servers� not yet mapped to ahoy�cs alias�
centauri�prime�cs Runs nightly job to augment hy�

potheses with server$site titles
vorlon�cs �

Each of these machines runs an httpd server and � crontab jobs for keeping this
server running� rotate logs and check server� Any output of the crontab jobs is sent to
the �local� ahoy account on each of the machines �i�e� you�d see a �you got new mail�
message when you log in into each of them�� but a �forward �le in the ahoy�user
directory should forward these messages to the maintainer of the system �currently
this crontab output� if any� is forwarded to marclang�cs��
If you add a new machine� make sure that it runs the �server� crontab �les� Use

the create new server root�pl script in �root��scripts�server� to create a server
root directory� then use the create crontab�pl script in the same directory to initialize
its crontab jobs�
If you remove a server� be sure to take a look at its crontabs �using �crontab �l���

and move any system wide tasks to another machine �i�e�� if you decide to remove
draz� you will need to add the system wide crontabs� say� to centauri�prime�� You
can use the create crontab�pl script for doing so� by specifying the �s option�
Note� The crontab job currently running on centauri�prime that augments the

hypotheses with corresponding server titles is not part of the default system�crontabs
package and has to be installed manually�

B���� How to make changes to the source code

Filename� �root��doc�CODING

Ahoy� Coding Guide

�		
 Marc Langheinrich

The Ahoy� source code is maintained using the CVS source control system� Although
this system� unlike RCS� does not impose access restrictions �i�e�� you can edit any
source� any time�� it is much better to take some steps before and after changing
some source code�

Tip� Use �man cvs� for an introduction to cvs� or view the �info� entries in your
emacs using �C�h i�� Using �cvs ��help�commands� on commandline lists all avail�
able commands� while �cvs �H �command�� gives help for the speci�c command�

General Directive� If you want to make changes to Ahoy�� you should �rst edit
a development copy in the �root��development� directory��� Only after you have

B�� On
line documentation ���

extensively tested the changes� you should update the sources in the �real� Ahoy�
distribution �i�e�� the sources in �root��system��
The only reason to work on the code of the �real� system is to �x some serious

problems that prevent the service from running at all� If Ahoy� is running ok� but
some responses are suboptimal� you should �rst try out your changes on a non�public
version��

Before you change a source�

�� Check to see if you are editing the latest version

draz� cvs �n update MyModule�pm

M MyModule�pm

This compares the local copy of MyModule with the one stored in the CVS
repository �currently located in �cvsroot��� The �n option prevents cvs from
making any changes to your source �le� The �rst letter indicates the di�erence
detected between your local copy� and the one in the repository�

M file The �le is modi�ed in your working directory� This indicates
that you have changed the original� but haven�t yet checked in
the changes into the repository� You probably want to update
the repository copy to the current version of the �le� before
you add any more changes� See �� below for how to com�
mit changes to the repository� Alternatively� the �le was also
changed in the repository� but the system is able to success�
fully merge the two versions together�

C file A con�ict was detected� This means that someone �maybe
yourself%� already checked in a new version of the �le after
you checked out this local copy� and now the system is unable
to merge the two versions �the changes you made to your local
copy� together�

If you remove the ��n� option� cvs will propagate any changes in the repository
to your local copy� In case a Con�ict was detected �C��� it will mark the
con�icting areas with ������ and ������ markup� so that you will have to
manually check and resolve any problems�

If the version in the repository hasn�t changed since you checked out your local
copy of the �le� your �le will not be changed� However� if you made any changes
unrelated to the one you are about to add� you will probably want to commit
those changes �rst to the repository� as outlined in ��

If the �update� command doesn�t list anything� your source�le and repository
entry are identical�

��� The Ahoy� System� Maintenance � Troubleshooting

�� Edit your �le as usual� Make sure everything works by running a couple of
sample searches�

�� Propagate changes to the repository

draz� cvs commit MyModule�pm

This will prompt you for a log message� and check in the updated version of
your Source�

�� Update the copy of your source in the �real� Ahoy� If you made your
chances in a development directory �as you should�� you should sooner or later
update the �real� version of Ahoy� to use the new� updated� source�

draz� cd ��ahoy�system�CGI�Ahoy�

draz� cd cvs diff MyModule�pm

will list the changes you made� and

draz� cd update MyModule�pm

U MyModule�pm

will update the copy in the Ahoy� directory with the changes you made� �You
might want to use �cvs �n update MyModule�pm� �rst to see what would hap�
pen� Having to clean up a con�ict in the �real� Ahoy� source is probably not a
good idea� since the ���� markup will def� prevent Ahoy� from compiling��

B���	 Web Statistics using htstats

Filename� �root��doc�HTSTATS

Troubleshooting Ahoy��s Web Statistics

�		
 Marc Langheinrich

This documents explains how to troubleshoot problems with the web statistics pack�
age� e�g�� if the statistics Web pages indicates zero hits for a number of days in a row�
although the system was up most of the day� Most probably this is due to problems
with the nightly crontab jobs�

�� Login to an Ahoy� machine �preferably draz�

�� cd into the server log archives

�� cd into the apropriate subdirectory� for example

centauri�prime��Alpha�� cd ahoy�server�archives����
��������
��

B�� On
line documentation ��	

�� List content

centauri�prime��Alpha�� ls

access�log�merged�������
��gz

centauri�prime������error�log�������
��gz

draz������error�log�������
��gz

vorlon������error�log�������
��gz

If you can �nd the �access log�merged� �le� continue with ���

�� If no access log�merged �le exists� check the status of the crontab jobs�

Check you mail on the draz machine �or whichever machine runs the htstats
job� to see if mail has been sent due to a problem during execution� Sometimes
an AFS server is temporarily down� and some of your scripts could not execute�
Usually� the problem should go away the next day� when the crontab jobs are
executed again� If you want� you can execute the scripts manually �if you�re in
a hurry��

�� Check each servers local �log� directory�

Login to each server you want to check� and cd into their apropriate server
root directory� usually something like

centauri�prime��Alpha�� cd ��ahoy�server�root�draz������

Be sure to be on the correct machine for each log � draz won�t be able to see
the log �les created on vorlon� and vice versa �well� maybe see them� but they�ll
be � bytes��

� Check for gzipped access$error logs in the �server�root��log directory�

If you can�t �nd those� then maybe the server hasn�t been restarted last night%
You can simply wait another day� then next day�s crontab jobs should make
things ok again� If you can�t wait� you could also rotate the logs manually

centauri�prime��Alpha�� ��ahoy�scripts�server�rotate�logs

�this should be repeated for each apropriate machine�

�� Merge Ahoy� access logs�

If you can �nd �gz �les in the directories� it means that the system wide
�merge logs� script has not been executed� You can do so manually by call�
ing

centauri�prime��Alpha�� ��ahoy�scripts�system�merge�all�server�logs

��� The Ahoy� System� Maintenance � Troubleshooting

This should only be executed once� However� you can of course also wait �til
tomorrow� when the next automated call to �merge� � � � should bring things in
order�

	� Now cd back to the archive� to see if the �les got merged ok�

centauri�prime��Alpha�� cd ahoy�server�archives����
��������
��

��� Look at the contents of the existing access log�merged �le� especially at the
beginning and the end�

centauri�prime��Alpha�� gzcat access�log�merged�������
��gz � more

centauri�prime��Alpha�� gzcat access�log�merged�������
��gz � tail

Make sure no entries overlap to a previous or following day� Sometimes the
statistics package gets mixed up if it �nds single entries of a di�erent day at
the beginning or at the end� Just remove any such entries using a text editor
�these two or three requests shouldn�t make a di�erence��

��� Manually restart indexing process

centauri�prime��Alpha�� ��hoy�scripts�system�update�htstats

�or� of course� wait until tomorrow� when it should get automatically �xed�

��� Check the created statistics pages again �eventually reload cached copies��
Point your browser to

http���ahoy�cs�washington�edu������htstats�

B��� MetaCrawler Interface

Filename� �root��doc�METACRAWLER

MetaCrawler Interface Description

�		
 Marc Langheinrich

This document provides a rough overview about the MetaCrawler interface used by
Ahoy�

Most of the code concerning the MetaCrawler interface is in the Ahoy��MC module�
However� the function that decodes the datastream sent back from the MetaCrawler
binary is in the nph
ahoy�cgi script� The relevant sources are�

B�� On
line documentation ���

CGI�

nph�ahoy�cgi�

�MC�callback handles datastream from MC

�MC�handle�entry called per entry

�MC�handle�crawler called per crawler

CGI�Ahoy�

MC�pm�

new contains MC commandline

get�chunk parses response

�read�answer�type determines MC answer type

Here�s how it works� nph
ahoy�cgi calls the MC��new method to create a new MC
object� This will also initialize the MetaCrawler commandline� Then it will take this
commandline� register it with the New Multi�pm Multiplexer�Service and specify the
MC callback function as a �callback� function� This callback function is called each
time new data arrives on the socket that is connected to the MetaCrawler output�
The MC callback function will use the MC��get chunk method to parse the datas�

tream into single entries� and then use the MC handle entry and MC handle crawler
functions to �le each entry �i�e� document reference� into our Bucket�Table�
If there�s something broken� it�s either the commandline assembled in Ahoy��MC��new�

or the data format has changed and Ahoy��MC��get chunk can�t decode it anymore�

What to do

Try running nph
ahoy�cgi from the commandline� and add the debug
� �ag� For
example�

draz� nph�ahoy�cgi first�marc last�langheinrich debug�� noemail��

�The noemail
� will skip the email directory connections � that makes our output
less cluttered�� You might want to uncomment the various calls to the inform function
in the Ahoy��MC��get chunk method� so that you can better see what�s going on�
Here�s a breakdown of what�s happening�
The originalMetaCrawler had two modes� Either it would request new information

from the search engines �called �f�resh answer�� or it would return a cached copy
�called a �c�ached answer�� if available�
The �rst case� the fresh response� would return special entries of each reference

right as they�d come back from the search services� like this

���� entry ���

�A

http���www�cs�washington�edu�homes�marclang�bio�html

�T

Short bio � Marc Langheinrich

�C

��� The Ahoy� System� Maintenance � Troubleshooting

Short bio � Marc Langheinrich� Short bio� I was born in February �
��

in Frankfurt�M� Germany� After �� years of schooling I recieved my

Abitur from the

�V

�

�H

�

�S

AltaVista

Once all search services returned� it would then return the standard HTML form
usually shown in the browsers� This information� only containing the already col�
lected references in collated format� would just directly written to disk by Ahoy�
However� in case of a cached reponse� only this collated list of references would be
returned� so Ahoy� would need to parse this list and create the same entries that
were usually created from the entries described above�
The current version of the MetaCrawler �aka Huskysearch� does not use a cache

anymore� so the response should always be a �f�resh response� guaranteeing that
Ahoy� can obtain the references by parsing the above entry structure� However� the
code still contains the full functionality for handling this dual answer mode� so that
makes it kinda hard to see what�s going on�
When the read chunk function is called the �rst time� it will �rst try to determine

the answer mode the MetaCrawler response is in� by calling the read answer type
method �well� again� Huskysearch should always return �f�resh answers��
After this method identi�ed a �f�resh or a �c�ached response� it will then set the

�self��f�answer type�g� Then the read chunk function reads line by line and tries
to group together single entries� until it �nds the �nal MetaCrawler HTML header�
from which point on it will �ag a �f�inal response� which enables Ahoy� to directly
store the rest of the answer �i�e� the HTML page� directly to disk�
The �le mc�output���� in the �root��doc� directory contains the sample out�

put of the current MetaCrawler version �as of
$	
�� You can use the mc�command
script in �root��doc� to reproduce the query that was used to create this response�
If you compare the two formats� it should become clear what changed �Note� The
order in which the references return will most certainly be di�erent� so it is probably
not a good idea to use �di�� on these two �les��

B���� List of Modules

Filename� �root��doc�MODULES

List of Ahoy� Modules

�		
 Marc Langheinrich

This �le describes the modules that make up the Ahoy� search service� They are
located in �root��system�CGI�Ahoy�

B�� On
line documentation ���

Alphabetical Listing

Analyzer� Sub�Modules used by Analyzer�pm
Location�pm Analyzes URL for Location match
Snippet�pm Analyzes Snippet for name match
Title�pm Analyzes Title for name match and page type
Analyzer�pm Analyzes single reference and returns feature values
Buckets� Sub�Modules used by Buckets�pm
Bucket�pm Implements a single Bucket object
Entry�pm Implements a single Entry in a Bucket
Table�pm Implements the Table object that holds Buckets
Zone�pm Implements Zones that group single Buckets

in Table
Buckets�pm Creates Table structure �no object code in

here� and initializes zones
Cont InstLookUp�pm Institution object subclass for Continued searches
Cont Query�pm Query object subclass for Continued searches
Cont Session�pm Session object subclass for Continued searches
DB�pm General DB object for storing$retrieving data�

now only used to access hypotheses
DB File�pm Subclassed from original DB File class to

access cross�domain hypo�db�s in Berkely DB
format �currently disabled� so this module is
unused�

Display�pm Display object� Handles Output to Browser
EmailLookUp�pm Email object� Handles connections to email

services
Globals�pm Holds global variable de�nitions
HP Locator�pm HPLocator object� responsible for initiating

direct search if no page was found
�alternatively� this will just print the list
of available server to search� thus setting up
a continued search via the nph�guessing script�

Hypothesis�pm Contains �Hypothesis� object implementations�
used by HP Locator and URLLearner

InstLookUp�pm Inst object� access Institutional database
Instantiator�pm This object is responsible for extracting and

generating URL�s
MC�pm Metacrawler object� handles all MC access
New Multi�pm Multi�Connection module� allow access to

spawned processes �i�e� glimpse search� MC� as
well as tcp connections �i�e� email services�

New Query�pm Query object subclass for new searches
New Session�pm Session object subclass for new sessions

�� The Ahoy� System� Maintenance � Troubleshooting

Nicks�pm Contains Nicknames �loaded by the Analyzer modules�
Query�new vocab�pm used by Query object for country name�to�id mapping
Query�pm Generic Query object� Decodes user query and

allows access to all �elds� Not used
directly� buty only through subclasses in two
di�erent �avours� New Query and Cont Query �
which are used when calling nph�ahoy�cgi or
nph guessing�cgi� respectively

Request�pm Request objects� subclassed from generic �libwww
default� HTTP��Request object� but with
extended �elds�

RobotPUA�pm Subclassed from LWP��RobotPUA� in order to provide
custom message for Ahoy�

Session�pm Generic Session Object� Creates unique session
�le for a given query� and allows other
objects to save data in there� Not used
directly� but rather in its two subclasses
New Session and Cont Session when using
nph�ahoy�cgi or nph�guessing�cgi� respectively

Statistics�pm Statistic objects are part of each hypothesis
object� where they keep track of there
successful usage�

Tools�pm General Tools �functions� for Ahoy�
URL�pm Generic URL object �subclasses from LWP��URL�

used by HP Locator and friends
�i�e� Hypothesis� URLLearner� etc�

URLLearner�pm Manages hypotheses �les by providing �ask�
and �tell� methods that retrieve or update
information stored in Ahoy��s hypotheses �les

Working�pm De�nes Root directory of this system� Used to
allow �development� versions to read$write
their data to di�erent directories than the
�real� Ahoy�

iHypo�pm �instantiated Hypotheses� objects created by
the Instantiator object�

Grouped Listing

Working�pm General Modules
Globals�pm

Tools�pm

Query�pm Query Decoding
Query�net vocab�pm

B�� On
line documentation ���

New Query�pm

Cont Query�pm

Session�pm Session directory management
New Session�pm

Cont Session�pm

Display�pm Output management

New Multi�pm Information sources management
InstLookUp�pm institutional DB

Cont InstLookUp�pm

EmailLookUp�pm email sources
MC�pm metacrawler

Analyzer�pm Reference Analyzer
Analyzer�

Location�pm

Snippet�pm

Title�pm

Nicks�pm

Buckets�pm Reference Sorting$Classi�cation
Buckets�

Bucket�pm

Entry�pm

Table�pm

Zone�pm

HP Locator�pm Direct Searching
RobotPUA�pm handles tcp connections
Request�pm

URLLearner�pm provides instantiated Hypotheses and
handles feedback

DB�pm accesses �hyp �les
�DB File�pm� accesses global�db �les �disabled�
Instantiator�pm maps URLs� hypotheses and instantiated hypotheses
URL�pm

Hypothesis�pm

Statistics�pm

iHypo�pm

B���� Ahoy� Server Troubleshooting

Filename� �root��doc�TROUBLESHOOTING

��� The Ahoy� System� Maintenance � Troubleshooting

Ahoy� Server Troubleshooting

�		
 Marc Langheinrich

General Information

Server Access Statistics can be accessed via

http���ahoy�cs�washington�edu������htstats

The current connections handled by each individual server can be checked via

http���ahoy�cs�washington�edu������server�status

� http���draz�cs�washington�edu������server�status

http���vorlon�cs�washington�edu������server�status

http���centauri�prime�cs�washington�edu������server�status

The current searches running on a given machine can be checked using

http���ahoy�cs�washington�edu������cgi�bin�nph�status�cgi

� http���draz�cs�washington�edu������cgi�bin�nph�status�cgi

http���vorlon�cs�washington�edu������cgi�bin�nph�status�cgi

http���centauri�prime�cs�washington�edu������cgi�bin�nph�status�cgi

The following section gives information for two kind of symptoms�

�� Ahoy� is down

�� Ahoy� is slow or shows other bad performance

Ahoy� is down

Server is not responding or search is not working� One of the following symptoms
have been observed�

�� server does not accept connections

Cause� Machine down� wedged

How to check� determine machine that has problems�

� try to connect to each machine individually

http���draz�cs������

http���vorlon�cs������

http���centauri�prime�cs������

� try telnet to it�

� go to physical location � check console

Action� Restart machine �press reset button�

B�� On
line documentation ���

Cause� Machine ok� but no server running

How to check� telnet to it� login as user ahoy� use ps auxwww � grep ahoy

to list currently running processes for user ahoy� At least ��� httpd pro�
cesses should be running

Action� use check
server script that does that for you and even starts$restarts
the server for you�

draz� ��ahoy�scripts�server�check�server

�� service returns no data �message in dialog box displayed by netscape�

Cause� an error in the perl script that leads to a compile time error �i�e� perl
complains when trying to load the script�

How to check� Run Ahoy� from commandline�

draz� cd ��ahoy�system�CGI

draz� ��nph�search�cgi first�marc last�langheinrich

Watch output� See the DEBUG guide if you can�t �gure out what this error
msg means� or how to correct it�

Action� Fix error reported on commandline� If Unix complains �$nph�foobar�
No such �le or directory�� then there�s something wrong with the !��
line that calls the perl interpreter� Make sure it points to a valid perl
executable� If instead a line number$�lename is displayed� follow this
information and try to �x this problem� then try to run Ahoy� from
commandline again�

�� access denied

Cause� Server on denied list

How to check� See access�conf�global in �root��server�root�

Action� remove server from entry� or remove entry completely� See the guide
HOWTO�Deny access in the doc�HOWTO� subdir on how to remove$add ac�
cess restrictions�

Cause� Requesting directory listing where none is allowed �like trying to get
http���ahoy����doc��

Action� If you want to enable directory listings in the particular directory you
requestes� you should change the line Options in the �Directory� entry
that contains the requested directory to include the option Indexes� If
you only want this single directory to be listable� add an extra �Directory
�afs�cs����� section for this directory only�

�� Server ��� error
Output stops right after �Ahoy� searching for ���� message
Output stops halfway during the search

��� The Ahoy� System� Maintenance � Troubleshooting

Cause� Ahoy� script encountered run�time error� i�e� compiled ok� but failed
to give any output once it started running� only printed header or died
somewhere later during the search�

How to check� Look at error logs for speci�c server

draz� tail �f ��ahoy�server�root�draz������logs�error�log

and$or try to run Ahoy� from commandline

draz� cd ��ahoy�system�CGI

draz� ��nph�ahoy�cgi first�marc last�langheinrich

and check for error messages

Action� Debug Ahoy� script from commandline� Follow information in the
HOWTO�HOWTO�Troubleshooting System guide�

Ahoy� performs badly

�� Ahoy� is slow

Cause� Heavy server load

How to check� Find out which speci�c machine is slow �i�e�� use draz���
and vorlon��� instead of ahoy���� but since currently only draz
is mapped to the �ahoy� alias� usually it should be draz�� Then check
currently running server on the machine

http����machine��cs������server�status

as well as the number of searches currently conducted

http����machine��cs������cgi�bin�nph�status�cgi

and maybe even the number of hits received today�

http���ahoy�cs�washington�edu������htstats�stats�html

�works only for draz� or look at the access logs directly

draz� more ��ahoy�server�root�draz������logs�access�log

draz� tail �f ��ahoy�server�root�draz������logs�access�log

Action� If a single site is repeatedly hitting Ahoy�� you can exclude it by adding
its IP$DNS address into the server access�conf �le� See access restriction
guide in HOWTO�HOWTO�Deny access�

If there are too many searches� you might want to consider lowering the
number of maximum searches in the nph
proxy�cgi script that checks if
Ahoy� is able to accept a new search by changing the value of the MAXIMUM
variable in nph
proxy�cgi�

Another reason for many searches piling up and klogging Ahoy� can also
be �lesystem related� See next section�

B�� On
line documentation ��	

Cause� AFS �le system problems

How to check� login to the slow machine� and check

� currently running processes

draz� top

� current usage of AFS �lecache and server availability

draz� fs getcacheparms

AFS using ����	� of the cache�s available ������ �K byte blocks�

draz� fs checkservers

Action� If another memory$CPU intensive process is running� try contacting
the owner and stop it� If the AFS chache is using nearly all of the avail�
able blocks� try to increase the cache size �see AFS�README in the ahoy�

directory�

�� Ahoy� misses entry �i�e� it shows up in MetaCrawler output but Ahoy� fails to
include it in response� or ranks sth else higher�

Cause� Ahoy� Analyzer function gave suboptimal ranking to this entry

How to check� Run the query again that showed this behaviour� then edit the
�Location� cmdline in your browser and add the �eld "dump
� at the end�
This will force Ahoy� to dump its internal Bucket table to the session
directory in a �le called table�data� To access it from your browser�
simply follow the link to the �search transcript page� and then change the
�Location� to point to table�data instead of status�html� You can also
access it from the UNIX prompt at

draz� cd ��ahoy�system�HTML�sessions�

draz� cd �date���sess�name�

draz� more table�data

�get those last two values from the location �eld of the search transcript
page��

Look through this �le and locate the reference that was suboptimally
placed� The interesting parts �i�e� those that lead to its placement in the
table� are�

��home�� �� ���

��location�� �� ���

��name�� �� M

Home is a three digit code for the �homepageness� of the reference� loca�
tion an indicator for the correct institution� and name a �eld denoting the
correct name in title or URL� See my thesis for a description� or contact
me directly� at marclang�cs� for more information

Action� Easy �xes could be to change the list of homepage and non�homepage
words in the Title Analyzer�

��� The Ahoy� System� Maintenance � Troubleshooting

draz� vi ��ahoy�system�CGI�Ahoy�Analyzer�Title�pm

and edit the variables

my �homepages � �s page�homepage�����personal !

my �nohps � project�presentation�����DB�amp!LP !

my �lists � students�faculty�staff�����directory ! ��

You might want to consult the CODING guide �rst��

�� Ahoy� lacks certain search service
Ahoy� fails to �nd the MetaCrawler output
The MetaCrawler found �� references�
See the METACRAWLER guide if you are having problems with the MetaCrawler
connection�

�� Ahoy� fails to write any output
Ahoy� shows �No Space� page when trying to view transcript or MC page�

Cause� lacking AFS permissions �or other �le permissions�

Action� See AFS�GUIDE in ahoy

Cause� disk quota exceeded

Action� Contact system administrator

Cause� No space left on device

Action� Check size of hypotheses database� session directories� etc�

�� Ahoy� fails to �nd email addresses�
Email addresses are decoded in the email callback function in nph
ahoy�cgi� The
variable that is given as the �rst argument is an array containing the following
�elds �as de�ned in Ahoy��New Multi�

"�# � Socket

"�# � Name of the Source

"�# � commandline

"�# � callback reference �i�e� the code you�re looking at�

"# � timeout in seconds

"�# � status

"�# � pointer to array containing output lines

"�# � last� partially received output line

The calls to the Email services are made in Ahoy��EmailLookUp� in the gen

erate email searches method� Look there to make sure the request format is
correct�

�� The server statistic at http���ahoy����htstats� says there wasn�t a single
hit on a particular day�

See the HTSTATS �le in �root��doc��

B�� On
line documentation ���

B���� Howto
 Count hypotheses

Filename� �root��doc�HOWTO�HOWTO�Count hypotheses

Howto count the number of hypotheses in Ahoy��s DB

�		
 Marc Langheinrich

Use the count hypos script in the �root��system�tools subdirectory� This script
will count the number of hypotheses and unique sites in the directory speci�ed� and
all of its subdirectories�
To count the number of hypotheses known in� say� kuwait� use

draz� count�hypos �afs�cs�home�ahoy�ahoy�system�resources�hypotheses�kw

"Traversing �afs�cs�usr�ahoy�ahoy�system�resources�hypotheses�kw#

"Traversing �afs�cs�usr�ahoy�ahoy�system�resources�hypotheses�kw�edu#

"Traversing �afs�cs�usr�ahoy�ahoy�system�resources�hypotheses�kw�edu�ku#

"Traversing �afs�cs�usr�ahoy�ahoy�system�resources�hypotheses�kw�ed#

"Traversing �afs�cs�usr�ahoy�ahoy�system�resources�hypotheses�kw�com#

"Traversing �afs�cs�usr�ahoy�ahoy�system�resources�hypotheses�kw�com�kn#

"Traversing �afs�cs�usr�ahoy�ahoy�system�resources�hypotheses�kw�gu#

��ahoy�system�resources�hypotheses�kw contains � hypotheses at � unique server

To �nd the total number of known hypotheses� use

draz� count�hypos �afs�cs�home�ahoy�ahoy�system�resources�hypotheses

B����� Howto
 Maintain the Institutional DB

Filename� �root��doc�HOWTO�HOWTO�Create Institutions DB

Howto create and maintain the institutional DB

�		
 Marc Langheinrich

Add single institutions � nicknames manually

If you just want to quickly add a speci�c institution to the database� or want to add
a �nickname� like �UW� to an existing institution� you can do so without having to
rebuild the index from scratch�
The edu� and com� subdirectory both contain �les called �hand entered��

draz� ls ��ahoy�system�resources�institutions�$�hand�$

��ahoy�system�resources�institutions�com�hand�entered

��ahoy�system�resources�institutions�edu�hand�entered

Note� The edu�� com�� mil� and gov� subdirectory are just for �ling purposes� Ahoy�
just searches all of them �using the glimpse index�� so it doesn�t really matter if the
com� directory contains educational sites or vice versa�
The format of such a �hand entered� �le is the same as for all other �les in the

institution DB� containing

��� The Ahoy� System� Maintenance � Troubleshooting

�� the URL of the institution

�� its name

�� a list of nicknames$abbreviations

These �eld are separated with a � character� resulting in lines like this�

http���www�washington�edu��University of Washington Home Page�uw

If you want to add another instiution� just append a correctly formatted line at
the end of one of these two �hand entered� lists� If you want to add a nickname to an
existing entry in these lists� just append the word at the end �separated by spaces��

If you want to add a nickname that is only in one of the regular �les �i�e� like
com�comlist����txt�� you should copy the corresponding entry from this �auto�
matically�� generated �le and add it as a hand entered entry to one of the two �les
described above� Otherwise you would have to

�� rerun the glimpse database generation script

�� update this entry again once a new list of institutions is obtain from Yahoo��
since it would overwrite this �le�

Create�Update The Institutions Glimpse Index

You should �nd the following directory structure in the institutions� dir�

�root��system�resources�institutions�

mil�

com�

edu�

gov�

cd into the �institutions� directory� then run

�uns�bin�glimpseindex �b �B �H � �T mil� com� edu� gov

to create the initial index� If you want to update an existing index� run the following
command instead �i�e� using the update option ��f��

�uns�bin�glimpseindex �f �b �B �H � �T mil� com� edu� gov

B�� On
line documentation ���

Download the Yahoo� information

On Wed� �� Jul �

�� Jonathan Shakes wrote�

� See

�

� �a�sekiu�sekiu��softbots�jonathan�inst�yahoo��mil�com�gov��yahoo�suck�perl

�

� �which does the first stage� and�

�

� list�convert�perl in the same directories

�

� which does the second� I believe one needs to delete all datafiles and

� dbm files before starting� otherwise it will think it�s already sucked

� down a lot of the info and not get the updated stuff� Unless I put in a

� check on the age of the files �� it�s been so long���

�

� I�d be happy to spend a couple of hours with someone who wanted

� to actually do it� and who would be assuming this role in the future�

�

� �Jonathan

B����� Howto
 Block speci�c sites from using Ahoy�

Filename� �root��doc�HOWTO�HOWTO�Deny access

Howto deny access to Ahoy�

�		
 Marc Langheinrich

Make sure you restart the server using the �restart�server� script after you changed
any access restrictions�

draz� ��ahoy�scripts�server�restart�server

Access Control Locations

Access restriction for the �Apache� Web server are de�ned in two ways� Globally and
Locally�

�� Global Access control
Global access control is speci�ed in the access�conf �le located in the Web
servers conf� directory� All Ahoy�Web servers share the same access�conf �le
by using a symbolic link from their conf� directory to the global access�conf�global
in �root��server�root��

draz� cd ��ahoy�server�root

draz� vi �access�conf�global

�	 The Ahoy� System� Maintenance � Troubleshooting

The access�conf �le contains multiple �Directory� ��Directory� sections
that de�ne access parameters for a certain physical directory and all of its
subdirectories� as well as some �Location� ��Location� sections that de�ne
access to services such as the server�status� Here�s an example�

�Directory �afs�cs�home�ahoy�ahoy�system�CGI�

AllowOverride None

Options FollowSymLinks

�Limit GET POST�

order allow�deny

deny from hawaii�uni�trier�de

allow from all

��Limit�

��Directory�

�� Local Access control
Each directory underneath the server�s Document root �and whatever else it
is serving using aliases� can have a hidden ��htaccess� �le that will override
any of the global settings de�ned in the access�conf �le� Here�s an example�

draz� cat some�directory��htaccess

AuthUserFile �afs�cs�home�ahoy��htpasswd

AuthGroupFile �afs�cs�home�ahoy��htgroup

AuthName ServerStatistics

AuthType Basic

�Limit GET�

require group develop

��Limit�

The contents of a �htaccess �les should be thought of being implictly en�
capsulated in a �Directory� Section with the corresponding name of the
directory the �le is located in� For example� the above �htaccess �le in
�some�directory would work as

�Directory �some�directory�

AuthUserFile �afs�cs�home�ahoy��htpasswd

AuthGroupFile �afs�cs�home�ahoy��htgroup

AuthName ServerStatistics

AuthType Basic

�Limit GET�

require group develop

��Limit�

��Directory�

B�� On
line documentation �	�

Access restriction schemes

The part that limits access is enclosed in the �Limit� section� An optional parameter
can speci�y the HTTP Method that this �Limit� section should be applied to�
usually �GET�� but for CGI�scripts also �POST�� Two basic schemes exist for limiting
access to a Web server� On a per�site basis� or using passwords and groups�

�� Limiting access on a server basis
The simplest form of limiting access is only allowing connections from a certain
host� or generally allowing all access but denying speci�c machines�

The �deny� and �allow� keyword can be used to list speci�c server� or even
domains �like washington�edu� that should be restricted� Specifying �all� will
include all servers� �none� will match no server�

The �order� �eld makes the important distinction of which of the directives
should be processed �rst� Here are examples�

This denies all access� then allows it to foo�bar�com�

�Limit GET�

order deny�allow

allow foo�bar�com

deny all

��Limit�

Changing the order will alter the list of allowed servers as well�

order allow�deny

allow foo�bar�com

deny all

which would �rst all access to foo�bar�com� then deny it to all server� resulting
in a blocked access for ALL server��

As a rule of thumb� The �eld �deny$allow� that contains an �all� �eld should
always be listed FIRST in the �order� command��

Another example� Allow access to all� but deny access to some speci�c sites�

�Limit GET POST�

order allow�deny

allow all

deny some�site�com

deny some�other�site�de

��Limit�

Deny access to everybody� but people from within the department�

�	� The Ahoy� System� Maintenance � Troubleshooting

�Limit GET POST�

order deny�allow

allow cs�washington�edu

deny all

��Limit�

�� Limiting access on a per user�group basis
The Directory section will need to contain a description on where to �nd the
password �les and users$groups that should be allowed access to this directory�
The AuthUserFile� AuthGroupFile specify �les that contain this information� The
AuthName section is used to give a meaningful description of the restricted
Server area when prompting the user for a password �i�e� �enter username
and password for XXXX��� The AuthType keyword has only one valid value�
�Basic�� See the Mosaic guide at

http���hoohoo�ncsa�uiuc�edu�Mosaic�auth�tutorial�tutorial�html

for more information about this type of access restriction� �note� you will need
the htpasswd program that comes with the Web server source code� It is in�
stalled in �uns�bin�htpasswd on draz� zhadum� vorlon and centauri�prime�

B����� Howto
 install an edit version of Ahoy�

Filename� �root��doc�HOWTO�HOWTO�Install edit version

Howto install an edit version of Ahoy�

�		
 Marc Langheinrich

This HOWTO describes the prcedures for setting up an �edit� version of the Ahoy�
service�

�� Create a �development� or similar directory o� the Ahoy��Root directory� For
example�

draz� cd �root�

draz� mkdir development

draz� mkdir development�edit

�� Populate the newly made directory with a copy of Ahoy��s system directory�
The easiest way �and most space consuming� would be to do

draz� cp �R �root��system �root��development�edit

Of course� this would also copy all of the current session directory� as well as the
hypothesis directory� Unless you want to experiment with di�erent hypothesis

B�� On
line documentation �	�

formats or session directories� you should probably provide symlinks to those
directories instead�

Also� the institutional database would be duplicated this way� so an much better
way �but more time consuming�� would be to manually recreate the directory
structure found underneath the �root��system directory� providing symlinks
for all but the system�HTML and system�CGI directory�

�� Adjust the entry in Working�pm and the mechanism used to translate this value
into a pathname in Globals�pm�

If you installed the copy into the directory �root��development�edit� you
should only need to specify edit in Working�pm� If you chose a di�erent naming
scheme� you will have to edit the corresponding lines in Globals�pm as well�

�� Extend the HTTP server to server the �edit� version of Ahoy� as well�

You will have to add an alias to the new HTML directory� as well as to
the new scripting directory� To do so� edit the �le srm�conf�global in the
�root��server�root� directory� Currently� all servers share this global con�
�guration �le by means of a symlink� If you installed local copies of this �le in
some server conf� directorie� you will have to edit these copies directly� The
entries to add are

Alias �edit �root��development�edit�system�HTML

ScriptAlias �cgi�bin�ahoy�edit� �root��development�edit�system�CGI�

Of course� you can name the path used by the HTTP server anything you like
�for example� �cgi�bin�test��� just make sure the �real� path points to the
correct edit version you just installed�

�� Restart the server to re�read the new entries

Use restart
server located in �root��scripts�server� on each machine� or
wait until the next day �Ahoy� restart itself every night when rotating the log
�les�� Then try to connect to the �edit directory on the Ahoy� server using
your favourite browser�

Note� It is a good idea to change the search form �table�search�form�html�
in your development version to note this in their �TITLE� or so� e�g� �Ahoy�
Development Version ���xx�� so that you can easily distinguish what version of
Ahoy� you are using�

Caveat� If you follow the �Start New Search� link on an Ahoy� results page� it
might take you to the �main� Ahoy� version� the one at the root of your HTTP
service� You should bookmark the search page of your development version
and use this bookmark to go back to the search form instead�

�	� The Ahoy� System� Maintenance � Troubleshooting

B����� Howto
 install Ahoy� in a new directory

Filename� �root��doc�HOWTO�HOWTO�New Root

Howto setup a new Ahoy� directory

�		
 Marc Langheinrich

�� Adjust script defaults�
In order for all scripts to use a common �root� and �port� number� run the follow�
ing script BOTH in the scripts$server AND the scripts�system� directory�

��scripts�server� ��change�root�pl �r �root�dir� �p �port�

��scripts�system� ���server�change�root�pl �r �root�dir� �p �port�

�� Adjust httpd con�g �les manually �not yet automated��
The Ahoy� default httpd�con�guration �les are located in �root��server�root��

�rw�rw�r�� � ahoy system ��
� Jun �� ���� �access�conf�global

�rw�rw�r�� � ahoy system ���� Jul � ����� �httpd�conf�global

�rw�rw�r�� � ahoy system ��� Jun �� ���� �mime�types�global

�rw�rw�r�� � ahoy system �
�� Jul � ����� �srm�conf�global

The following settings need to be changed in case the root directory should be
altered�

� httpd�conf�global
ServerRoot

Port �this needs to be altered in case the port changes�

� srm�conf�global
DocumentRoot

Alias

ScriptAlias

� access�conf�global
�Directory ����

Use your favourite editor and search for the given keywords� then change each
value to re�ect the new Ahoy��root directory�

�� Adjust path information in Globals�pm �le�
The �MAIN�DIR variable in Globals�pm �in the �root��system�CGI�Ahoy� di�
rectory� should be set to the �root� directory�

Make sure the �UNS�BIN variable points to the directory containing unsup�
ported programs like �glimpse�� usually �uns�bin�

B�� On
line documentation �		

�� Adjust path information in httpd server stats con�guration �le
The HTMLDir variable in the httpd�con�guration �le �ahoy�conf� in the direc�
tory +root,$system$HTML$htstats$ has to point to the directory it is located
in �i�e� +root,$system$HTML$htstats�

�� Create Glimpse Index �if neccessary��
You should �nd the following directory structure in the �root��system� dir�

�root��system�resources�institutions�

mil�

com�

edu�

gov�

cd into the �institutions� directory� then run

�uns�bin�glimpseindex �b �B �H � �T mil� com� edu� gov

to create the initial index� If you want to update an existing index� run the
following command instead �i�e� using the update option ��f��

�uns�bin�glimpseindex �f �b �B �H � �T mil� com� edu� gov

�� Check required programs and symbolic links�
Ahoy� relies on �nding the following programs in their respective directories�

�uns�bin�perl �Version �����

�uns�bin�glimpse �Version ��� �uses UNS�BIN in Global�pm module�

�root��bin�httpd �Apache� version ����

The following symbolic links should be checked in order to make sure they exist
and point to the correct programs�

�root��system�HTML�

��index�html �� ��table�search�form�html

�during maintenance� this can also point to ��out�of�service�html�

�root��system�CGI�

��nph�search�cgi �� ��nph�proxy�cgi

��nph�status�cgi �� ��nph�proxy�cgi

Ahoy� uses some non�standard perl modules for parallel Web access� These �les
need to be accessible from the �root��system�CGI directory in a symbolic link
named LWP�

�root��system�CGI�

��LWP �� �afs�cs�home�ahoy�pua

�	� The Ahoy� System� Maintenance � Troubleshooting

Directories that get written to during an Ahoy� search should be put on a �le
system without diskquota restrictions� Especially the daily sessions can easily
grow up to hundreds of megabytes� which would exceed standard quotas of
most accounts� In addition� one might consider putting these on a local disk
for faster access�

�root��server�root ��

�afs�cs�project�metaserver�ahoy�server�root�

�root��system�HTML�sessions ��

�afs�cs�project�metaserver�ahoy�system�HTML�sessions

�root��system�HTML�resources�hypotheses ��

�afs�cs�project�metaserver�ahoy�system�resources�hypotheses

� Adjust Working directory path�
Ahoy� can use multiple con�gurations� in order to support running di�erent
versions simultaneously� The �le Working�pm contains extra path information
for development systems� which are located in a special �development directory��

For the main Ahoy� system� Working�pm should contain an empty string in the
WORKING variable�

See also the module Global�pm in �root��system�CGI�Ahoy� for the use of
this variable in the main program�

Note� Currently� only the main version is set up� In order to create a �trial� or
�edit� version �handy for experimenting with the source code without disturbing
the main service�� see the �le HOWTO�Install edit version�

�� Create a new server�root directory�
See HOWTO�Create new Server Root

	� Test ahoy search script�
Change directory into the ahoy�CGI directory�

cd �root��system�CGI

and execute nph
ahoy�cgi on the command�line�

��nph�ahoy�cgi first�oren last�etzioni inst�washington

You should see the verbose HTTP$HTML output send to a Netscape browser
during a typical search �i�e� including intermediate status reports�� Please
refere to the �le HOWTO Troubleshooting System in case this fails�

B�� On
line documentation �	�

B����� Howto
 Add a new machine to the Ahoy� cluster

Filename� �root��doc�HOWTO�HOWTO�New Server

Howto add a new machine to the Ahoy� cluster

�		
 Marc Langheinrich

�� Adjust port number defaults�
Make sure that the scripts use the correct port number you want to use� If you
want to create a large number of servers running on di�erent machines� but
having the same port number� it is probably a good idea to change the defaults
in the script�

�a� change the default port number in the server and system scripts�

��scripts�server� ��change�root�pl �r �root�dir� �p �port�

��scripts�system� ���server�change�root�pl �r �root�dir� �p �port�

PS� Unfortunately� the current version of change root�pl requires you to
at least specify the root dir� Even if you just want to change the port
number only� you will have to specify the root dir again� since it is a
required parameter�

�b� change the default port number in the httpd�conf �le� The Ahoy� default
httpd�con�guration �les are located in �root��server�root��

�rw�rw�r�� � ahoy system ���� Jul � ����� �httpd�conf�global

Change the port the httpd server is running on by changing the Port

variable in the httpd�conf�global �le� Use your favourite editor and
search for the Port keyword� then change the value to re�ect the correct
port number�

Since most of the server� and system�scripts are not yet able to accept a
port argument� you might have to create a second set of scripts in case
you want to have Ahoy� running on two di�erent port numbers�

You can use the change root�pl script to create one set� copy it to a safe
location� and the create another set with a di�erent port number�

After you created a new server directory using the create new server root
script �as described below�� you will then have to edit the locally created
copy of httpd�conf in each server directory to re�ect the correct port
number for that directory$server�

�� Run the s�amily create new server root script�
Simply run the create new server root script with the correct machine name
supplied via the �m option� If the directory already exists� and you want to
overwrite it� use the �f option to force overwriting the current information�
Otherwise the script won�t overwrite your existing con�guration�

�	� The Ahoy� System� Maintenance � Troubleshooting

vorlon��Alpha�� ��create�new�server�root�pl �m draz �f

Creating new Server Root underneath ��afs�cs�home�ahoy�ahoy�server�root��

Machine� draz

Port� ����

Directory for machine�port �draz������ exists�

Removing��� �you specified �f� right%�

Success� Here�s what we created

�afs�cs�home�ahoy�ahoy�server�root� ls �l draz������

total �

drwxrwxr�x � ahoy system ��� Jul � ����	 conf

drwxrwxr�x � ahoy system ��� Jul � ����	 logs

Don�t forget to setup the crontab file on draz using create�crontab�pl�

�� Test the scripts on the newly added machine�
Log into the machine for which you just created a server root� and try to execute
the start server script�

centauri�prime��Alpha�� cd �root��scripts�server�

centauri�prime��Alpha�� ��start�server

Server started� Checking log files���

ok

If something goes wrong� please check manually to make sure you created the
correct directory and are using the correct port numbers in the start�server
script �sorry� you can�t use a �p �ag or so to specify a non�default port here ��
��

Now try to stop the server�

centauri�prime��Alpha�� ��stop�server

All servers halted

Restart it �apparently� no server is running� so the script should complain about
that�

centauri�prime��Alpha�� ��restart�server

No server to restart� Start new one�

Server started� Checking log files���

ok

Then try the check�server script� centauri�prime��Alpha�Server running

ok� ����� �or whatever pid your server has�

�� Install the crontab on the added machine�
First� check the parameters in �root��server�create crontab�pl to see if
they �t the crontab executable used on your system�

B�� On
line documentation �	�

cron�read �� crontab �l �

cron�write�� crontab �

skip �� �� � some crontab append headers �number of lines�

Make sure that the �rst command lists your existing crontab �le� and that
the second command takes input from STDIN and creates a new crontab �le
for you� �On some systems this might be �crontab ��� Finally� some crontab
versions add a certain number of �header� lines� such as the day of the change�
to each crontab �le �eg� on Linux�� You can specify �skip� to tell the script to
skip the �rst n lines of the current crontab �le when adding the Ahoy� jobs�

Then take a look at the crontab �le that would be created by running

centauri�prime��Alpha�� ��create�crontab�pl

Reading existing crontab file��� �skipping first � lines�

crontab� can�t open your crontab file�

� �ahoy type�server�

�

���

�

� ��ahoy�

Please use the �c switch to write the new crontab file

Check the output to see if the correct paths have been used� and if existing
crontab jobs have been copied� Once you are certain that eveything is ok� use
the �c option to commit the new crontab �le�

centauri�prime��Alpha�� ��create�crontab�pl �c

You can test to see if the crontab jobs are running corrctly for example by
stopping the currently running server �using stop
server�� and checking after ��
minutes to see if check
server automatically started a new one�

B����	 Howto
 Install required third�party programs for Ahoy�

Filename� �root��doc�HOWTO�HOWTO�Setup�Environment

Howto setup the Ahoy� environment

�		
 Marc Langheinrich

The following is a list of programs neccessary to run Ahoy� For each source� a URL
is given where the source code can be obtained�

�� The Ahoy� System� Maintenance � Troubleshooting

Perl

Version� ���� or higher

FTP� ftp���ftp�spu�edu�pub�CPAN�src�latest�tar�gz

Alternative� See http���www�perl�org�CPAN�SITES�html

Web Info� http���www�perl�com�perl

Ahoy� uses the freely available http�analyze package� which in turn needs Thomas
Boutells GD library for dynamic GIF creation�

http�analyze

Version� ��
d or higher

FTP� ftp���ftp�rent�a�guru�de�pub�http�analyze��
d�tar�gz

Web Info� http���www�netstore�de�Supply�http�analyze�

gd

Version� ��� or higher

FTP� http���www�boutell�com�gd�gd����tar�Z

Web Info� http���www�boutell�com�gd�

B���� Howto
 �x Ahoy� bugs

Filename� �root��doc�HOWTO�HOWTO�Troubleshooting System

Howto troubleshoot the Ahoy� system

�		
 Marc Langheinrich

This HOWTO describes how to overcome problems with the Ahoy� main script�
nph
ahoy�cgi� It does NOT describe problems with the Ahoy� HTTP server� See the
TROUBLESHOOTING guide in �root��doc for problems related to the apache httpd pro�
cess� Also� for cases where the command line interface seems to work �ne� but using
the Web based search form mysteriously fails� see the above Server troubleshooting
guide instead�
The following is an unordered list of problems you can experience when run�

ning the Ahoy� search script on the command line� We assume you cd�ed into the
�root��system�CGI directory� and issued something like

vorlon��Alpha�� ��nph�ahoy�cgi first�dan last�weld inst�washington

Here�s what could possibly go wrong�

�� ��nph�ahoy�cgi� Command not found�

You speci�ed a wrong executable in the �rst line of the nph�ahoy script� or an
executable perl interpreter could not be found at the directory speci�ed�

The �rst line of all �nph�� scripts should look something like this�

���uns�bin�perl

� �Id� nph�ahoy�cgi�v ��� �

������� ������� marclang Exp �

B�� On
line documentation ���

To make sure you are using the right path� try issuing

vorlon��Alpha�� which perl

�uns�bin�perl

�� Can�t locate ���� in �INC ���
Your executable has the wrong version number� Make sure you are using perl
version ����� or higher� You can use the following command line parameter to
�nd out the version of the perl executable you are using�

vorlon��Alpha�� perl �v

This is perl� version ��

�RCSfile� perl�c�v ��Revision� ��� ��Date� �

������ �	������ �

Patch level� ��

Copyright �c� �
	
� �

�� �

�� Larry Wall

Perl may be copied only under the terms of either the Artistic License or the

GNU General Public License� which may be found in the Perl �� source kit�

�� Perl complains with an error in line xxx

If it just complains about a missing ��� or other syntax error� this one should
be easy enough to �x� Just go to the line number in the �le reported� and try
to locate the problem�

You can also enable a ton of �sometimes spurious� debug messages using the
debug
� value on commandline� Other useful �ags are

 nomc�� disables the use of the Metacrawler

 noemail�� disables the use of external email directories

If it�s not just a simple syntax error� you might want to start Ahoy� using the
Perl debugger� This gives the advantage that it �ll dump a stack trace once
the script breaks� so that you can �nd out which arguments got passed�

vorlon��Alpha�� perl �d nph�ahoy�cgi first�marc last�langheinrich

Loading DB routines from perl�db�pl version �

Emacs support available�

Enter h or &h h� for help�

HTTP���� ��� OK

Content�type� multipart�x�mixed�replace!boundary���ClrScr

��ClrScr

��� The Ahoy� System� Maintenance � Troubleshooting

Content�type� text�html

�HTML�

�head��title�Ahoy� Searching for Marc Langheinrich��title���head�

�address�Please wait�����address��hr�

�h��Searching for� Marc Langheinrich��h���hr�

�ul�

main�����nph�ahoy�cgi��� require �����!

DB���

If you just type �c� for �continue�� the debugger should try to execute ahoy and
will report the current stack content once it encounters an error� If you can�t
�gure out what the problem is� send mail to marclang�cs�washington�edu

with the a detailed description� and at least a copy of what�s been printed out
when trying to run the Ahoy� system from commandline �w$o debugger�

Common problems are�

� Can�t locate Foo�Bar�pm in �INC ��INC contains� ����
Make sure you installed all the neccessary Perl modules for Ahoy� �i�e��
the libwww library� which contains LWP��� WWW��� HTTP�� and HTML��
modules�� An excellent module for installing additional Perl modules is
the CPAN module that ships with Perl������

draz� perl �MCPAN �e shell

Also make sure that the nph
ahoy�cgi and nph
guessing�cgi scripts contain
a

use lib ���!

at the beginning� which enables it to �nd the Ahoy�� LWP� and WWW� mod�
ules that are locally installed underneath the CGI� directory�

� Can�t locate object method �new� via package �Foo��Bar�
You might have mistyped the package name when calling the method
described in the error message� Make sure you have a use Foo��Bar or
require Foo��Bar in your code� Or� you mistyped the method name�
Make sure the method given does indeed exist in the package described�
To get a list of all directories where Ahoy� looks for libraries� type

draz� perl �e �join � 'n � (INC�� 'n �!�

Any use lib ��some�dir� will be prepended to this list�

� Can�t locate auto�LWP�ParallelUA�init�reques�al in �INC

The extension modules LWP��ParallelUA and LWP��RobotPUA are only
installed locally� You need to have a explicitly list the path to the directory
where they are installed� If the LWP� directory is in the same directory as
nph
ahoy�cgi� all you need to add is

B�� Embedded Source Code Documentation ���

use lib ���!

This should �x the problem�

B�� Embedded Source Code Documentation

Most Ahoy� modules have method and function documentation embedded into the
source code� Using Perl�s Plain Old Documentation� �POD� format� the docu�
mentation for each module and its routines can be displayed as a manpage �using
perldoc�� as an HTML page �using pod�html�� as a LATEXpage �using pod�latex�
and a number of other formats�
Figure B�� shows the documentation for the URLLearnermodule in HTML format�

The corresponding source code is listed below�

� �Id� URLLearner�pm�v ��� �

������� ������� marclang Exp �

package Ahoy��URLLearner!

� Ahoy modules

use Ahoy��DB!

use Ahoy��DB�File!

use Ahoy��URL!

use Ahoy��iHypo!

use Ahoy��Hypothesis!

use Ahoy��Globals qw��HYPO�DIR �session�!

� Standard modules

use Carp��!

use strict!

�head� NAME

Ahoy��URLLearner � Ahoy�s URL Learning module

�head� SYNOPSIS

use Ahoy��URLLearner!

� Constructors

my �learner � new Ahoy��URLLearner!

� Methods

�hypolist � �lerner��ask � '(sites� '(emails �!

�lerner��add �'(hypotheses�!

�learner��feedback �'(hypotheses�!

��� The Ahoy� System� Maintenance � Troubleshooting

N
A

M
E

SY

N
O

PSIS
D

E
SC

R
IPT

IO
N

SE

E
 A

L
SO

C

O
N

ST
R

U
C

T
O

R

O
B

JE
C

T
 M

E
T

H
O

D
S

M
ain M

ethods
O

ther M
ethods

IN
T

E
R

N
A

L
 FU

N
C

T
IO

N
S

A
U

T
H

O
R

N
A

M
E

A

hoy::U
R

L
L

earner - A
hoy!s U

R
L

 L
earning m

odule

SY
N

O
P

SIS

u
s
e

A
h
o
y
:
:
U
R
L
L
e
a
r
n
e
r
;

#

C
o
n
s
t
r
u
c
t
o
r
s

m
y

$
l
e
a
r
n
e
r

=

n
e
w

A
h
o
y
:
:
U
R
L
L
e
a
r
n
e
r
;

#

M
e
t
h
o
d
s

$
h
y
p
o
l
i
s
t

=

$
l
e
r
n
e
r
-
>
a
s
k

(

\
@
s
i
t
e
s
,

\
@
e
m
a
i
l
s

)
;

$
l
e
r
n
e
r
-
>
a
d
d

(
\
@
h
y
p
o
t
h
e
s
e
s
)
;

$
l
e
a
r
n
e
r
-
>
f
e
e
d
b
a
c
k

(
\
@
h
y
p
o
t
h
e
s
e
s
)
;

#

u
s
u
a
l
l
y

n
o
t

u
s
e
d

d
i
r
e
c
t
l
y

$
r
e
t
v
a
l

=

$
l
e
a
r
n
e
r
-
>
s
i
m
p
l
e
_
a
s
k

(

$
s
i
t
e

)
;

$
l
e
a
r
n
e
r
-
>
s
i
m
p
l
e
_
t
e
l
l

(

$
s
i
t
e
,

\
@
h
y
p
o
t
h
e
s
e
s

)
;

$
l
e
a
r
n
e
r
-
>
s
i
m
p
l
e
_
f
e
e
d
b
a
c
k

(

$
s
i
t
e
,

\
@
h
y
p
o
t
h
e
s
e
s

)
;

D
E

SC
R

IP
T

IO
N

T

his m
odule im

plem
ents the A

hoy::U
R

L
L

earner class for A
hoy!. It serves as a frontend for the m

odules
that m

ake up A
hoy!s learning capabilities.

T
hree m

ethods are norm
ally used to access A

hoy!s learning: a
s
k, a

d
d and f

e
e
d
b
a
c
k. T

he first m
ethod,

a
s
k, is used to get a list of general hypotheses for the given sites and em

ails. T
he second m

ethod, a
d
d, is

used to add a list of general hypotheses to A
hoy!s know

ledge base. Finally, f
e
e
d
b
a
c
k is used once a list

of general hypotheses have been applied and the recorded feedback for each hypothesis should be
w

ritten to A
hoy!s know

ledge base.

SE
E

 A
L

SO

A
hoy::H

ypothesis, A
hoy::iH

ypo, A
hoy::U

R
L, A

hoy::Instantiator, A
hoy::D

B
_F

ile, A
hoy::D

B

C
O

N
ST

R
U

C
T

O
R

new

 A
hoy::U

R
L

L
earner

T
his is the object constructor. It w

ill create a new
 A

hoy::U
R

L
L

earner object. It im
ports the

$
H
Y
P
O
_
D
I
R variable in order to initialize an A

h
o
y
:
:
D
B object to access A

hoy!s list of general
hypotheses and inititalizes the statistics m

odule to use the ‘‘L
aplace’’ statistics.

O
B

JE
C

T
 M

E
T

H
O

D
S

M
ain M

ethods

$hypolist = $lerner->ask (\@
sites, \@

em
ails);

W
ill return a pointer to an array of A

h
o
y
:
:
H
y
p
o
t
h
e
s
i
s objects, ranked by confidence values. A

ll
site inform

ation should be objects w
ith h

o
s
t and c

z
s m

ethods. E
m

ails should com
e as a list of

em
ail objects (i.e. having h

o
s
t, c

z
s and u

s
e
r m

ethods).

$learner->tell (\@
hypotheses)

A
dds new

 H
ypotheses to the database. If a hypothesis already exists, the entry is ignored.

$learner->feedback (\@
hypotheses)

For the given set of hypotheses, update the hypotheses stored on disk according to the feedback
stored w

hithin \@
hypotheses.

O
ther M

ethods

$entries = $learner->sim
ple_ask ($site [, $db [, $raw

]])
W

ill return a pointer to an array of A
h
o
y
:
:
H
y
p
o
t
h
e
s
i
s objects, found in the database entry for

$
s
i
t
e. $

s
i
t
e m

ust be in ‘‘C
Z

S’’ form
at (see A

h
o
y
:
:
U
R
L).

If a database object is given as the second argum
ent, it w

ill use its interface to retrieve the data
(used for getting global data not follow

ing the standard subdir conventions).

A
 final third argum

ent w
ill, if true, force $

l
e
a
r
n
e
r
-sim

ple_ask>
 to return the entries in string

form
, so that the caller can selectively process them

. T
his is used by the private m

ethod
$
l
e
a
r
n
e
r
-_get_m

eta>
 so that it w

ill not w
aste tim

e constructing hypotheses it w
ill never need

again.

$learner->sim
ple_tell ($site, \@

hypotheses)
A

dds new
 H

ypotheses to database entry $
s
i
t
e (in ‘‘C

Z
S’’ Form

at). If hypotheses exists, entry is
ignored.

$learner->sim
ple_feedback ($site, \@

hypotheses)
For the given set of hypotheses, update the hypotheses stored on disk according to the feedback
stored w

hithin \@
hypotheses.

IN
T

E
R

N
A

L
 F

U
N

C
T

IO
N

S
($em

ails, $m
atch_factor) = best_m

atching_em
ails ($host, \@

em
ails);

T
his function reports the em

ail object that best m
atches the given host, using the

c
o
m
p
u
t
e
_
o
v
e
r
l
a
p function below

.

$overlap = com
pute_overlap ($site_a, $site_b);

C
om

putes the overlap of tw
o host strings (such as w

w
w
.
c
s
.
w
a
s
h
i
n
g
t
o
n
.
e
d
u). T

he returned value
reports the num

ber of segm
ents that m

atch from
 right to left.

A
U

T
H

O
R

M

arc L
angheinrich, m

a
r
c
l
a
n
g
@
c
s
.
w
a
s
h
i
n
g
t
o
n
.
e
d
u

F
igu
re
B
���
E
m
b
e
d
d
e
d
D
o
c
u
m
e
n
ta
tio
n
S
a
m
p
le
�
M
ost
A
h
o
y�
m
o
d
u
les
con
tain
em
b
ed
d
ed
d
o
cu
m
en
tation
in
th
eir
sou
rce
co
d
e�

U
sin
g
P
erl�s
�P
lain
O
ld
D
o
cu
m
en
tation
�
�P
O
D
�
form
at�
th
e
d
o
cu
m
en
tation
for
each
m
o
d
u
le
an
d
its
rou
tin
es
can
b
e

d
isp
layed
as
a
m
an
p
age
�u
sin
g
p
e
r
l
d
o
c
��
as
an
H
T
M
L
p
age
�u
sin
g
p
o
d
�
h
t
m
l
�
or
as
a
L AT
E
X
p
age
�u
sin
g
p
o
d
�
l
a
t
e
x
��
T
h
e

ab
ove
ex
am
p
le
sh
ow
s
th
e
d
o
cu
m
en
tation
for
th
e
U
R
L
L
earn
er
m
o
d
u
le
in
H
T
M
L
form
at�

B�� Embedded Source Code Documentation ��	

� usually not used directly

�retval � �learner��simple�ask � �site �!

�learner��simple�tell � �site� '(hypotheses �!

�learner��simple�feedback � �site� '(hypotheses �!

�head� DESCRIPTION

This module implements the Ahoy��URLLearner class for Ahoy�� It serves

as a frontend for the modules that make up Ahoy�s learning

capabilities�

Three methods are normally used to access Ahoy�s learning� C�ask��

C�add� and C�feedback�� The first method� C�ask�� is used to get a

list of I�general hypotheses� for the given I�sites� and I�emails��

The second method� C�add�� is used to add a list of I�general

hypotheses� to Ahoy�s knowledge base� Finally� C�feedback� is used

once a list of I�general hypotheses� have been applied and the

recorded feedback for each hypothesis should be written to Ahoy�s

knowledge base�

�head� SEE ALSO

L�Ahoy��Hypothesis�� L�Ahoy��iHypo�� L�Ahoy��URL��

L�Ahoy��Instantiator�� L�Ahoy��DB�File�� L�Ahoy��DB�

�cut

�head� CONSTRUCTOR

�over

�item new Ahoy��URLLearner

This is the object constructor� It will create a new Ahoy��URLLearner

object� It imports the �HYPO�DIR variable in order to initialize an

C�Ahoy��DB� object to access Ahoy�s list of general hypotheses and

inititalizes the statistics module to use the Laplace statistics�

�cut

sub new �

my � �class � � (�!

my �self � �

� database is in the �hypotheses� subdirectory� ��char directories

��� The Ahoy� System� Maintenance � Troubleshooting

� maxumim depth � subdir below country and zone subdirs �see DB�pm�

db �� new Ahoy��DB ��HYPO�DIR������

wp �� undef� � will hold reference to whitepages object

�!

bless �self� �class!

Ahoy��DB�File��init��HYPO�DIR�!

Ahoy��Hypothesis��set�statistics � Laplace �! � or Laplace or ASR � ���

�self!

�

�back

�head� OBJECT METHODS

�head� Main Methods

�over

�item �hypolist � �lerner��ask � '(sites� '(emails �!

Will return a pointer to an array of C�Ahoy��Hypothesis� objects�

ranked by confidence values� All site information should be objects

with C�host� and C�czs� methods� Emails should come as a list of email

objects �i�e� having C�host�� C�czs� and C�user� methods��

�cut

sub ask �

my ��self� �sites� �emails� � (�!

� the �meta�hash will hold accumulated statistics for each path in

� different levels of abstraction� globally� for all �edu domains�

� etc�

� Since we usually call �ask� only once� we make this a local

� variable� in order to keep the object itself simple in its

� representation� If we would have several �ask� requests in

� sequence� we should probably cache this value accross multiple

� calls���

my �meta � ��!

� determine DB entries �in CZS format� to query

� i�e� www�cs�washington�edu and www�ee�washington�edu are at the same

� location and should only request one CZS�entry� edu�washington

my �czs!

foreach �(�sites� � �czs�����czs�))! �!

B�� Embedded Source Code Documentation ���

� create hash table with all hypotheses sorted by host

my ��site� �hypotheses�!

foreach �site �keys �czs� �

� load hypotheses for each czs entry

my �entries � �self��simple�ask ��site�!

my ��entry� �host� �path�!

foreach �entry �(�entries� �

� and sort per host

�host � �entry��host!

�hypotheses��host� � "# unless �hypotheses��host�!

push �(��hypotheses��host��� �entry�!

�path � �entry��path!

� create meta�stats for �site at the same time

if ��meta����site�����path�� �

� merge two stats

�meta����site�����path���statistics��merge��entry��statistics�!

� merge placeholders

�meta����site�����path���placeholder ��entry��placeholder�!

� else �

� clone hypothesis and statistics

my �path�hypo � clone Ahoy��Hypothesis �entry!

�meta����site�����path� � �path�hypo!

�

�

�

undef �czs! � done with that

� domain dependent stuff follows �i�e� email filtering�

if ��emails� �

� compute email match foreach host

my ��host� �email�match�!

my �max � �! � don�t bother unless we have at least a match of �

foreach �host �keys �hypotheses� �

my ��matching�emails� �match�factor� �

�best�matching�emails ��host� �emails�!

if ��match�factor � �max� �� we have a new maximum match factor�

�max � �match�factor!

�email�match � ��! � delete all previous entries

�

� don�t store suboptimal matches

�email�match��host� � �matching�emails

unless �max � �match�factor!

�

��� The Ahoy� System� Maintenance � Troubleshooting

� if have any data in �email�match� that means that we could filter

� out some hosts�

if ��email�match� �

� delete all hosts in hypothesis list that are NOT in emails list

� and expand leftover hypothesis with respective email info

foreach �host �keys �hypotheses� �

my �matching�emails!

unless ��matching�emails � �email�match��host�� �

delete �hypotheses��host�!

� else � � tell hypothesis which email works for it

my �hypothesis!

foreach �hypothesis �(��hypotheses��host��� �

�hypothesis��emails ��matching�emails�!

�

�

�

�

�

� read this return value �Schwartzian Transform� from bottom to top�

return " � sort all remaining hypotheses by their confidence

� values� best first

sort � �b��confidence ��� �a��confidence �

� now we should check each remaining hypothesis to see

� wether it�s �established� enough� Otherwise consult

� the hypothesis� next higher knowledge base

� �i�e� site hypos� zone hypos� etc�

map � � ����established % �� � �self���get�meta�����meta� � �

� map pointer to hypotheses per site into array

map � (�� �

values �hypotheses #!

�

� get�meta is a helper method for �self��ask� It will try to augment

� the given hypothesis with statistics found in the meta�kb given as

� the second argument� These additional statistics will be used when

� calling the hypothesises ��confidence method�

sub �get�meta �

my ��self� �hypo� �meta�kb � � (�!

my (levels!

my �global�db � �self����gdb��!

� assemble substring of czs entry� (levels � ��edu�washington�� �edu�� ���

my (czs � split��'��� �hypo��czs� � �!

B�� Embedded Source Code Documentation ���

while �pop (czs� � push �(levels� join � � �(czs��! �

� Wow� Watch out� Perl Hack �Schwartzian Transform� ahead�

my �level! my �path � �hypo��path!

foreach �level �(levels� �

� create hash entry for this level if needed

tie ���meta�kb����level��� Ahoy��DB�File � �level��global�db

unless � exists �meta�kb����level� �!

� Creation on demand� Keep strings unless we need the information�

my �meta�hypo � �meta�kb����level�����path�!

� if we have a string at this position we� create an hypo object

� and store it in our hypothesis object

if ��meta�hypo� �

�meta�hypo � new Ahoy��Hypothesis � split ��'t���meta�hypo� ���!

�hypo��push�meta��meta�hypo�!

� if we have an established hypothesis here� we stop

last if �meta�hypo��established!

� else �

return �hypo!

�

�

return �hypo!

�

�back

�over

�item �learner��tell � '(hypotheses �

Adds new Hypotheses to the database� If a hypothesis already exists�

the entry is ignored�

�back

�cut

sub tell �

my � �self� �hypotheses � � (�!

� sort new hypotheses by each site

my �sites � Ahoy��URL��sort�by�czs ��hypotheses�!

� delete hosts that we couldn�t split �most likely numeric addresses�

delete �sites�����no�split��!

�� The Ahoy� System� Maintenance � Troubleshooting

my �success ��! � forces updates

foreach �keys ��sites� �

�success)� �self��simple�tell � ��� �sites������ �!

�

� sanity check� if we didn�t tell anything new to the real sites�

� can it be that we have new global info%� no�� So � let�s wait

� with adding global info unless we�re sure at least one of our

� local db�s got updated���

if ��success� �

� also sort paths by zone and country� as well as globally

my �hypothesis! my �paths�seen! my �globals � ��!

foreach �hypothesis �(�hypotheses� �

my (czs � split ��'��� �hypothesis��czs�!

next unless �czs"�#! � unsplittable hosts start with a ��� ��

� ignore those

� create hypothesis w�o host information� and copy feedback

my �path�hypo � new Ahoy��Hypothesis �hypothesis��path!

�path�hypo��placeholder��hypothesis��placeholder�!

while �pop (czs� �

my �cz � join � � � (czs� �global�db �!

�globals����cz� � "# unless �globals����cz�!

push �(��globals����cz��� �path�hypo�!

�

�

� now record new info by using a tied hash

foreach �keys ��globals� �

my �hash! my �path�hypo!

tie �hash� Ahoy��DB�File � ��!

foreach �path�hypo �(��globals�������� �

� read from hash

my �existing � �hash��path�hypo�!

my �new!

if ��existing� �

� update

�new � �existing!

my (parts � split ��'t���existing� ��!

my �ph�obj! my �added!

foreach �ph�obj �values ���path�hypo��placeholder�hash�� �

� check to see if the placeholder appears in the entry

unless ��parts"�# �� �'d $�ph�obj'b�� � � if not� append it

�new�� 't ��ph�obj��stringify!

�!

�

� else �

B�� Embedded Source Code Documentation ���

�new � join� 't ��path�hypo��stringify�!

�

� save to hash

�hash��path�hypo� � �new unless �new eq �existing!

�

�

� � if success

�

�over

�item �learner��feedback � '(hypotheses �

For the given set of hypotheses� update the hypotheses stored on disk

according to the feedback stored whithin '(hypotheses�

�back

�cut

sub feedback �

my ��self� �hypotheses � � (�!

� give individual feedback for each site

my �sites � Ahoy��URL��sort�by�czs ��hypotheses�!

� delete hosts that we couldn�t split �most likely numeric addresses�

delete �sites�����no�split��!

my �success!

foreach �keys ��sites� �

�success)� �self��simple�feedback � ��� �sites������ �!

�

� sanity check� if we didn�t tell anything new to the real sites�

� can it be that we have new global info%� no�� So � let�s wait

� with adding global info unless we�re sure at least one of our

� local db�s got updated���

if ��success� �

� record feedback for each zone and country� as well as globally

my �hypothesis! my �globals � ��!

foreach �hypothesis �(�hypotheses� �

my (czs � split ��'��� �hypothesis��czs�!

� create hypothesis w�o host information� and copy feedback

my �path�hypo � new Ahoy��Hypothesis �hypothesis��path!

�path�hypo��feedback��hypothesis��feedback�!

��� The Ahoy� System� Maintenance � Troubleshooting

�path�hypo��placeholder��hypothesis��placeholder�!

while �pop (czs� �

my �cz � join � � � (czs� �global�db �!

�globals����cz� � "# unless �globals����cz�!

push �(��globals����cz��� �path�hypo�!

�

�

� now record new info by using a tied hash

foreach �keys ��globals� �

my �hash! my �path�hypo!

tie �hash� Ahoy��DB�File � ��!

foreach �path�hypo �(��globals�������� �

� read from hash

my �existing � �hash��path�hypo�!

my �new!

if ��existing� �

� create hypo

my �original � Ahoy��Hypothesis��new� split ��'t���existing� �� �!

� update

�original��update��path�hypo��feedback�!

my �placeholders � �path�hypo��placeholder�hash!

if ��original��new�placeholder��placeholders�� �

� grab stats and placeholders and add to existing hypo

�original��placeholder��placeholders�!

�

� create string

�new � join� 't ��original��stringify�!

� else �

�new � join� 't ��path�hypo��stringify�!

�

� save to hash

�hash��path�hypo� � �new unless �new eq �existing!

�

�

� � if success

�

�

� Private Methods �sort of�

�

�back

�head� Other Methods

B�� Embedded Source Code Documentation ���

�over

�item �entries � �learner��simple�ask � �site "� �db "� �raw## �

Will return a pointer to an array of C�Ahoy��Hypothesis� objects� found

in the database entry for C��site�� C��site� must be in CZS format �see

C�Ahoy��URL���

If a database object is given as the second argument� it will use

its interface to retrieve the data �used for getting global data not

following the standard subdir conventions��

A final third argument will� if true� force C��learner��simple�ask� to

return the entries in string form� so that the caller can selectively

process them� This is used by the private method

C��learner���get�meta� so that it will not waste time constructing

hypotheses it will never need again�

�cut

sub simple�ask �

my ��self� �site� �db� �raw� � (�!

�site �� �hyp !

my (entries!

� allow usage of alternate DB scheme

�db � �self���db� unless �db!

� get raw text

my �lines � �db��read � �site �!

� create hypotheses unless the user wants raw text

if ��raw� �

�lines!

� else �

foreach �(�lines� �

push � (entries� new Ahoy��Hypothesis � split ��'t����� �� � �!

�

'(entries!

�

�

�back

�over

�item �learner��simple�tell � �site� '(hypotheses �

��� The Ahoy� System� Maintenance � Troubleshooting

Adds new Hypotheses to database entry �site �in CZS Format�� If

hypotheses exists� entry is ignored�

�cut

sub simple�tell �

my ��self� �site� �hypos� �db� � (�!

�site �� �hyp !

� allow usage of alternate DB scheme

�db � �self���db� unless �db!

my ��entries� �fh� � �db��read�and�keep�open� �site �!

� make sure open was successful

return unless �fh!

�

� Munch new hypos with existing ones�

�

� Don�t create new hypos here� Wait until we really have to

my �hypotheses � � read from bottom to top � Schwartzian Transform �

� �nd� create pair consisting of �hypo��as�string and original line

map � " split ��'t����� �� #��"�# �� �� �

� �st� Start with list of entries

(�entries!

� In order to speed up things if we just have some new hypotheses� this

� hash will exclusively hold �new� hypotheses� If we didn�t update any

� of the old ones� we can then just �append� the new hypotheses� instead

� of rewriting the whole file���

my �new!

� Foreach hypothesis given� try to update the ones we just read from disk�

� We only have to check if it exists� If so� we simply append �new�

� placeholders to the string lines if neccessary� taking into account

� our �tell� semantics which only allow adding new placeholders here� but

� not increasing �successes� counts��

my ��hypothesis� �original� �updated� �new� (parts� �hypo�string�!

foreach �hypothesis �(�hypos� �

�hypo�string � �hypothesis��as�string!

unless ��original � �hypotheses��hypo�string�� �

� add new hypothesis

�new))!

�hypotheses��hypo�string� �

�new��hypo�string� � �hypothesis!

� else �

� for the sake of speed� we don�t convert an entry into an object

B�� Embedded Source Code Documentation ��	

� unless we really have to

if �ref��original�� � �if it already is an object� go ahead

my �placeholders � �hypothesis��placeholder�hash!

if ��original��new�placeholder��placeholders�� �

� grab placeholders and add to existing hypo

�original��placeholder��placeholders�!

�updated))!

�

� else �

� if we don�t have an object here� don�t bother creating one

� just incrementally add new placholders at the end of the line

(parts � split ��'t���original� ��!

my �ph�obj! my �added!

foreach �ph�obj �values ���hypothesis��placeholder�hash�� �

� check to see if the placeholder appears in the entry

unless ��parts"�# �� �'d $�ph�obj'b�� � � if not� append it

�original�� 't ��ph�obj��stringify!

�added))!

�!

�

if ��added� � � update entry

�hypotheses��parts"�#� � �original!

�updated))!

�

�

�

�!

� now save the updated hypotheses back to disk

if ��new and not �updated� �

(�entries � map � join� 't � ����stringify��� � values �new!

return �db��add � �site� �entries� �fh �!

� elsif ��updated� �

� can�t sort anymore here �we have a hash of mixed strings and objects�

� and it would take too long to create new objects every time�

(�entries � map � ref����% join� 't � ����stringify��� � ��! �

values �hypotheses!

return �db��write � �site� �entries� �fh �!

� else �

close ��fh�!

return �!

�

�

�back

��� The Ahoy� System� Maintenance � Troubleshooting

�over

�item �learner��simple�feedback � �site� '(hypotheses �

For the given set of hypotheses� update the hypotheses stored on disk

according to the feedback stored whithin '(hypotheses�

�back

�cut

sub simple�feedback �

my ��self� �site� �hypos� �db� � (�!

�site �� �hyp !

� allow usage of alternate DB scheme

�db � �self���db� unless �db!

� load DB�entries �as strings� into memory

my ��entries� �fh� � �db��read�and�keep�open� �site �!

� make sure open was successful

return unless �fh!

� create hypotheses�hash on the fly

my �hypotheses � � read from bottom to top � Schwartzian Transform �

� �nd� create pair consisting of �hypo��as�string and original line

map � " split ��'t����� �� #��"�# �� �� �

� �st� Start with list of entries

(�entries!

my �new!

� foreach hypothesis given� try to update the ones we just read from disk

� we only have to check if it exists� and if so� if we have new place�

� holders

my ��hypothesis� �original� �updated� �new� (parts� �hypo�string�!

foreach �hypothesis �(�hypos� �

next unless �hypothesis��feedback!

�hypo�string � �hypothesis��as�string!

� make note in our status file

�session��dump�to�file � feedback�data � 'nHypothesis Feedback� �

�hypothesis��feedback� 't�hypo�string �!

unless ��original � �hypotheses��hypo�string�� �

� hmm someone must have deleted the original hypotheses on disk

� or this is a redirection which resulted in a new hypothesis

� add new hypothesis

B�� Embedded Source Code Documentation ���

�new))!

�hypotheses��hypo�string� �

�new��hypo�string� � �hypothesis!

� else �

� we�ll have to generate a new hypothesis here� since we�ll have

� to recompute the statistics now���

�original � Ahoy��Hypothesis��new� split ��'t���original� �� �

unless ref��original�!

�original��update��hypothesis��feedback�!

my �placeholders � �hypothesis��placeholder�hash!

if ��original��new�placeholder��placeholders�� �

� grab stats and placeholders and add to existing hypo

�original��placeholder��placeholders�!

�

� replace entry in our hash with hypo�object!

�hypotheses��hypo�string� � �original!

�updated))!

�

�!

� now save the updated hypotheses back to disk

if ��new and not �updated� �

(�entries � map � join� 't � ����stringify��� � values �new!

return �db��add � �site� �entries� �fh �!

� elsif ��updated� �

� can�t sort anymore here �we have a hash of mixed strings and objects�

� and it would take too long to create new objects every time�

(�entries � map � ref����% join� 't � ����stringify��� � ��! �

values �hypotheses!

return �db��write � �site� �entries� �fh �!

� else �

close ��fh�!

return �!

�

�

�

� functions

�

�head� Internal Functions

�over

�item ��emails� �match�factor� � best�matching�emails � �host� '(emails �!

��� The Ahoy� System� Maintenance � Troubleshooting

This function reports the email object that best matches the given

host� using the C�compute�overlap� function below�

�cut

sub best�matching�emails �

my ��host� �emails� � (�!

� reports email objects that best match the given host� including

� the match factor�

my ��email� �matches� (emails�!

my �best�match � �!

foreach �email �(�emails� �

my �email�host � �email��host!

� check cache ��matches�

unless �exists �matches��email�host�� �

� create new cache entry if we have a new host

�matches��email�host� � �compute�overlap ��host� �email��host�!

� new maximum%

if � �matches��email�host� � �best�match � �

�best�match � �matches��email�host�!

(emails � ��! � delete all previous entries

�

�

� don�t store suboptimal matches

push �(emails� �email� unless �best�match � �matches��email�host�!

�

�'(emails� �best�match�!

�

�back

�over

�item �overlap � compute�overlap � �site�a� �site�b �!

Computes the overlap of two host strings �such as

C�www�cs�washington�edu��� The returned value reports the number of

segments that match from right to left�

�back

�cut

sub compute�overlap �

B�� Embedded Source Code Documentation ���

my �site�a � shift!

my �site�b � shift!

my (site�a � reverse split ��'����site�a�! � we want to compare

my (site�b � reverse split ��'����site�b�! � from back to front�

�match�factor�'(site�a� '(site�b�!

�

� private

sub match�factor � � computes the overlap of two lists

my �first � shift!

my �second � shift!

my �overlap � �!

while ��first��"�overlap# eq �second��"�overlap#� �

�overlap))!

last unless defined �first��"�overlap#!

�

�overlap!

�

� keep perl happy

�!

�head� AUTHOR

Marc Langheinrich� C�marclang(cs�washington�edu�

