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ABSTRACT
Accurate Cognitive Workload (CW) estimation, crucial in mobile
healthcare and human-machine interaction, is impeded by client
heterogeneity, data limitations, and privacy concerns, especially
in the presence of Out-of-Distribution (OoD) clients. This study
proposes a robust framework that is based on Federated Learning
to protect data privacy, and utilizes context-based STRNet to enable
joint cross-user learning on heterogeneous datasets, enhancing
model generalisability. The framework includes a novel Unsuper-
vised Client Personalisation strategy that prevents accuracy loss in
OoD clients. We tested our framework on two publicly available
CW datasets, COLET and ADABase. The framework improved the
accuracy of centralized approaches while preserving data privacy.
The framework is model-agnostic, efficient, and enables unsuper-
vised personalisation for each client, bolstering the quality and
robustness of the end-to-end deep learning models.

CCS CONCEPTS
• Human-centered computing → Ubiquitous and mobile
computing systems and tools; • Security and privacy→ Dis-
tributed systems security; • Computer systems organization
→ Client-server architectures.
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1 INTRODUCTION
Accurate Cognitive Workload (CW) estimation, which quantifies
the cognitive effort exerted by individuals during a task, can pre-
vent burnout, reduce medical errors, and enhance human-machine
interfaces [3, 11, 12]. CW estimation commonly exploits physiolog-
ical signals, such as respiratory, ocular, neural, muscular, cardiac,
and electrodermal activities. [5, 7, 11]. Nonetheless, CW estimation
faces several challenges. Resource-intensive data collection often
yields limited or heterogeneous datasets, necessitating training on
single datasets, which restricts deep learning model generalization.
In real-world scenarios, unseen clients might diverge from the train-
ing distribution, termed Out-of-Distribution (OoD) clients, leading
to reduced performance [1, 10]. Furthermore, privacy protection
remains a significant concern, since contemporary state-of-the-art
sensors used for CW estimation collect sensitive data, e.g., cameras,
eye trackers, and biomedical sensors [7, 8, 11]. In response to these
challenges, we propose: i) a unified framework that utilizes joint
Federated Learning (FL) across two heterogeneous datasets, thereby
expanding the training data without requiring client data transfer;
ii) a context-based version of the STRNet [4] that processes sensor

signals from diverse heterogeneous datasets, and exploits temporal
and frequency signal components, and iii) an Unsupervised Client
Personalisation mechanism, designed to tailor the model to each
unseen user, especially effective in bolstering performance on OoD
clients. To our knowledge, this study is the first exploration of Fed-
erated joint training and Unsupervised Client Personalisation for
the development of privacy-aware CW estimation pipelines.

2 DATASETS AND PREPROCESSING
In this study, we utilize two public datasets, COLET [7] and AD-
ABase [11], for CW estimation. COLET provides eye-tracking data
from 46 participants across four tasks (A1/A2/A3/A4). Each task
designed to induce different CW levels. We utilized seven signals,
focusing on classifying two CW levels: high (tasks A1 and A2) and
low (tasks A3 and A4). Differently, ADABase involved 29 partici-
pants using multimodal sensor data. They captured physiological
metrics during a driving simulation and a memory test, designed
to modulate CW. In our analysis, eight signals were utilized to
classify between high and low CW levels. Data preprocessing, exe-
cutable locally to alignwith FLmethodologies, involved: 1) applying
subject-wise normalization for uniformity, comparability and en-
hanced CW differentiation across datasets; 2) resampling signals to
a consistent 50Hz; 3) segmenting into 10-second windows with a
75% overlap, and 4) structuring input windows of 15 signals (seven
from COLET, eight from ADABase), with one shared signal (de-
tected blinks). The first model layer had 14 inputs - six from COLET,
seven from ADABase, and one shared, that enables cross-dataset
knowledge sharing. Each client then populates the input with the
signals it possesses, setting the others to zero, while a context vector
indicated signal presence.

3 PROPOSED FRAMEWORK FOR
UNSUPERVISED PERSONALISATION

Informed by the experimental outcomes presented in [2] and [4],
we utilized the spectro-temporal ResNet (STRNet) architecture,
designed with 14 inputs to exploit both temporal and frequency
domain information. Differing from the original implementation,
our adaptation permits a variable number of input signals by in-
troducing a context vector to mask activations from absent inputs.
This modification enables learning a joint model from multimodal
heterogeneous datasets. Our STRNet can be generalized into an
Encoder and two distinct Heads. As illustrated in Figure 1, the En-
coder and global Head (Headg) are simultaneously trained across
both datasets via Global Federated Learning (GFL), while the local
Head (Headl), specific to each dataset, is trained on a single dataset
using Federated Fine-Tuning (FFT). Specifically, inspired by [6], our
training process for each client unfolds in two subsequent phases:
GFL and FFT. First, in the GFL phase, clients receive a global model
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Figure 1: Training and Unsupervised Client-Personalisation for a client n and dataset d.

from the server and train it using their respective local datasets, sub-
sequently returning an encrypted version of the updated weights
to the server, where the global model is updated through weighted
averaging [9]. Subsequently, two FFTs are executed using the frozen
pre-trained Encoder, aggregating on the server only the weights
from clients of the same dataset. Both training phases employ a bi-
nary cross-entropy loss function and utilize Adam for optimization.
We opted for this implementation over client-specific fine-tuning
(not federated) for two key reasons: first, the necessity of devel-
oping and testing a client-independent model; and second, client
datasets may be limited, potentially resulting in unstable training.
Post-training, we implement our proposed Unsupervised Client
Personalisation (UCP), whereby a unique model for each client is
constructed utilizing the global Encoder and Headg received from
the GFL, alongside the Headl from the FFT (Figure 1). Predictions
generated by both Heads are combined using a learnable parameter
e as follow: 𝑦 = 𝑒 ·𝑦𝑔 + (1− 𝑒) ·𝑦𝑙 where 𝑦𝑔 and 𝑦𝑙 represent predic-
tions from Headg and Headl, respectively. Unsupervised learning
is applied to each unseen client, simulating real-world scenarios,
prior to delivering final inferences. To optimize the e parameter,
Equation 1 is minimized:

𝐿 = 𝜆 ·
[
−
∑︁
𝑖

𝑝𝑖 (𝑦) · log𝑝𝑖 (𝑦)
]
+[

𝑒 · | |ℎ𝐸𝑀𝐴
𝑛 − ℎ𝑔 | |2 + (1 − 𝑒) · | |ℎ𝐸𝑀𝐴

𝑛 − ℎ𝑑
𝑙
| |2
]

(1)

Here, 𝜆 is a hyperparameter, and the first term denotes the Shannon
Entropy of the softmax probability for the i-th class on 𝑦, which
augments the model’s predictive confidence. The second term en-
forces latent space alignment with ℎ𝑔 and ℎ𝑑

𝑙
, adjusting the balance

between the models to prioritize the one trained on the closer
dataset (global or local). Specifically, ℎ𝑑

𝑙
is the average latent space

of clients related to dataset d, while ℎ𝑔 is the mean for all clients
involved in the FL. ℎ𝐸𝑀𝐴

𝑛 is the instantaneous latent space average
for the current client, computed using Exponential Moving Average.
Additionally, we also explored an Unsupervised Federated Client
Personalisation (UFCP) to obtain a unique personalized model per
dataset. As shown in Figure 1, clients from the same dataset undergo
federated training, exclusively sharing the learnable e parameter,
leading to a unified personalisation model for testing clients.

4 RESULTS AND DISCUSSION
Our results, validated using person-independent testing with six
clients from ADABase and nine from COLET, are showcased in Ta-
ble 1. They demonstrated that our proposed UFCP and UCP frame-
works outperform traditional Centralized Training and Dataset-
Specific FL on two distinct datasets. Even compared to the privacy-
invasive Centralized approach, UCP improved accuracy from 91.8%
to 92.5% on ADABase and from 83.7% to 91.2% on COLET. Our
ablation study revealed that the ADABase dataset, when used in
our GFL, notably boosts network performance for COLET clients,
enhancing accuracy by 0.4% and 3.7% on ADABase and COLET re-
spectively. This improvement suggests that joint training enhances
the network’s capacity to extract pertinent information from the
data. Although FFT does not overtly enhance performance, it cre-
ates two local models, each specific to its training distribution,
providing distinct contributions to the OoD clients. Essentially,
our UCP framework enhances the Encoder’s generalization capa-
bilities through global training, and then identifies the optimal
combination of two Heads trained on diverse distributions (e.g.,
two separate datasets), to leverage the benefits of both distributions
per client. In summary, this study addresses several challenges in
estimating CW by: 1) augmenting dataset size by merging two
heterogeneous datasets (COLET and ADABase) to leverage com-
mon, task-related information through our STRNet with context
vector; 2) safeguarding user data privacy through federated ap-
proaches; and 3) enhancing test client performance, including those
outside the training distribution, via our UCP. Notably, our frame-
work surpasses even the privacy-intrusive centralized approach. Its
model-agnostic nature permits the use of any Encoder architecture
and theoretically enables exploitation of numerous datasets with
at least one common signal. Consequently, this study paves the
way towards leveraging client-personalized deep learning models
to extract high-level knowledge from data, even in the absence of a
large, homogeneous dataset.
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