
Detecting Verbal and Non-Verbal Gestures Using Earables
Matías Laporte

matias.laporte@usi.ch
Università della Svizzera italiana (USI)

Switzerland

Preety Baglat
preety.baglat@usi.ch

Università della Svizzera italiana (USI)
Lugano, Switzerland

Shkurta Gashi
shkurta.gashi@usi.ch

Università della Svizzera italiana (USI)
Lugano, Switzerland

Martin Gjoreski
martin.gjoreski@usi.ch

Università della Svizzera italiana (USI)
Lugano, Switzerland

Silvia Santini
silvia.santini@usi.ch

Università della Svizzera italiana (USI)
Lugano, Switzerland

Marc Langheinrich
marc.langheinrich@usi.ch

Università della Svizzera italiana (USI)
Lugano, Switzerland

ABSTRACT
Verbal and non-verbal activities convey insightful information
about people’s affect, empathy, and engagement during social inter-
actions. In this paper, we investigate the usage of inertial sensors
to recognize verbal (e.g., speaking), non-verbal (e.g., head nodding,
shaking) and other activities (e.g., eating, no movement). We im-
plement an end-to-end deep neural network to distinguish among
these activities.We then explore the generalizability of the approach
in three scenarios: (1) using new data to detect a known activity
from a known user, (2) detecting a novel activity of a known user
and (3) detecting the activity of an unknown user. Results show that
using accelerometer and gyroscope sensors, the model achieves a
balanced accuracy of 55% when tested on data from a new user,
41% on a new activity of an existing user, and 80% on new data of a
known activity from an existing user. The results are between 7-47
percentage points better than baseline classifiers used for compari-
son.

CCS CONCEPTS
•Human-centered computing→Ubiquitous andmobile com-
puting systems and tools.
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1 INTRODUCTION
Our motivation for detecting verbal and non-verbal activities is
rooted in our work on building human memory augmentation
systems. Using earable computing, we attempt to recognize different
types of human activities, in particular head gestures, with the
purpose of detecting when a social interaction is taking place. This
is because the presence of others and our interactions with them
play important roles in our memories, both during the formation
of memory and at retrieval time: moments of social interactions
might be easier to remember (formation time), and remembering
a particular interaction might also help to remind us of particular
details (retrieval time).

The importance of human memory for our daily lives cannot
be overstated. It gives us an identity, lets us remember future in-
tentions, carry quotidian tasks, and obtain new knowledge. It also
allows us to share experiences and maintain and nurture relation-
ships [19]. Therefore, civilization has applied increasingly com-
plex methods to preserve its memories and overcome their failures.
Today, capture technology such as cameras, voice recorders, and
fitness trackers are coming close to making total capture (and, con-
sequently, total recall [2]) a possibility, if not already a reality [12].
However, even if every part of our lives is captured and recorded, it
is far from trivial to then use this information to aid our memory.

Memory augmentation systems will only succeed as long as they
are able to appropriately select the relevant memories for the user
[30]. In fact, instead of presenting the user a fully recorded memory,
these systems should take advantage of the power of memory cues
– objects or events that help us remember our original memory or
intent. By prompting the user with such a (small) cue, they will
be able to recall the original experience in great detail. One key
challenge here is to identify appropriate cues among the recorded
data that, when played back to the user, will trigger such recall.
Social interaction might mark important moments that may make
useful memory cues.

Social interaction can easily be detected using audio sensing:
detecting a conversation is a sure sign of interpersonal activity.
Similarly, closely tracking the movements and orientation of peo-
ple could allow us to identify social interaction. Alternatively, a
wearable camera may pick up faces of others and identify social
interaction. All three options rely on highly sensitive personal data.
Instead, we seek to identify head gestures to detect both verbal and
nonverbal social interaction.

To summarize, this paper presents the following contributions:

https://doi.org/10.1145/1122445.1122456
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• We present a new dataset comprised of accelerometer and
gyroscope data collected using ear-worn devices. The dataset
was collected from 10 participants while performing 5 activ-
ities: nodding, speaking, eating, staying, and head shaking.

• We investigate the feasibility of using a deep Convolutional
Neural Network (CNN) to recognize activities related to
social interactions such as verbal (e.g., speaking) and non-
verbal (e.g., nodding) gestures, as well as gestures unrelated
to interactions (e.g., eating).

2 RELATEDWORK
The continuous development of unobtrusive wearable sensors has
made possible the recording of new types of data in uncontrolled
settings. Of particular interest to our work is the use of earable
sensors, i.e., head-mounted in-ear/behind-the-ear sensors, to detect
speech and head gestures, as cues for human interaction. As previ-
ously mentioned, other approaches (e.g., cameras and microphones)
require an involved setup with additional privacy issues to consider.

Current earable devices can accommodate several sensors (e.g.
accelerometers, gyroscopes, microphones or biometric sensors) and
actuators (e.g., speaker) in a comfortable size with decent battery
autonomy, allowing not only sound and head movement measure-
ments, but also of head rotation and bio-signals, among others.

2.1 Earable Systems
Earable sensors have been proposed as a tool with "enormous po-
tential in accelerating our understanding of a wide range of human
activities in a nonintrusive manner", with applications ranging
from "health tracking" to "contextual notification management" ,
including "cognitive assistance" and "lifelogging" [21].

Among the applications to deepen our understanding of human
behaviour, Frohn et al. [10] have used an earable sensor to charac-
terize the emotional intent of study participants performing a series
of scripted scenes. Although the results were limited due to the
reduced sample size and the use of non-actors, they showed that
participants act more energetically and in sync when the scenes
have a positive intent, than otherwise.

Röddiger et al. [29] instead used in-ear accelerometer and gy-
roscope sensors for health tracking, by measuring the respiration
rate of the participants.

Other applications include: EarDynamic [32], a biometric-based
authentication method which models users’ ear canal deformation
through the emission of inaudible audio signals and their reflections;
and EarBuddy [33], a gesture recognition system which uses the
microphones on the earbuds to detect different types of finger
touches in the face.

Although these approaches have done novel applications with
the available earable technology, none of them have focused on the
detection of human behavior.

2.2 Human Behaviour Detection
Earable sensors benefit particularly from the proximity and contact
with the face to be able to distinguish themovements of the jawbone
and the activation of the different muscles.

EarBit [1], for example, was a prototype with multimodal (acous-
tic, motion) sensors to detect chewing episodes. It used an optical

proximity sensor to measure the deformation of the ear canal pro-
duced by the movement activity of the mandibular bone, and a
9-axis Inertial Measurement Unit (IMU) to capture the movement
of the temporalis muscle, used when chewing. Earbit also included
a microphone located around the neck to detect swallowing events.
A chest-mounted GoPro was used as ground truth collector. Aur-
acle [3] is another example of eating detection, but with the use
of a contact microphone instead, and an unobtrusive ground truth
collector embedded into a cap.

In STEAR [28], ear mounted IMU sensors have been proposed
as a new approach for step counting, with the benefit of not being
affected by random motions of leg and hand, like it would happen
with a smartphone or a smartwatch, respectively.

There also exists previous research on the recognition of head
gestures and human activities, even in social interaction settings,
with the use of earables.

Gjoreski et al. [15] used a 9-axis IMU to detect 8 individual daily
life activities from a dataset of 4 subjects. Ferlini et al. [9] used an
ear-worn device to track head rotations while performing activities
like chewing and speaking. Min et al. [26] used an IMU sensor
and a microphone for monitoring conversational well-being, using
models that recognize speaking activities, altogether with stress
and emotion detection. Tan et al. [31] used earable devices to detect
the head orientation of interacting groups and used it as a cue
for directed social attention. Lee et al. [23] focused instead on the
recognition of smile and frowns gestures, while Islam et al. [20]
proposed an activity recognition framework differentiating between
head andmouth related activities (e.g. head shaking, nodding, eating
and speaking), and normal activities (e.g. staying, walking and
speaking while walking).

Our work further expands on Islam et al.’s by considering the
detection of verbal and non-verbal gestures in the context of social
interactions, with the intent of marking part of those moments as
important for the use of memory cues.

2.3 Human Memory Augmentation
The idea of a system that stores one’s digital records (e.g., docu-
ments, images, multimedia etc.) for a lifetime goes back to the 1945
vision of the Memex by Vannevar Bush [6]. While Bush did not de-
tail the exact technology for implementing his vision, he predicted
an era when storage will be virtually unlimited. Some 60 years later,
the MyLifeBits project attempted to fulfill the promise of Bush’s
vision [13]. MyLifeBits started as a platform that could log all per-
sonal information generated and accessed on a PC, but its memory
enhancing aspects quickly emerged [12]. More recently, Davies et
al. [8] described the vision and core architectural building blocks of
a future pervasive memory augmentation ecosystem, while Harvey
et al. describe the role of lifelogging technology in this vision [18].

3 DATA COLLECTION
We provide below details about the participants, the type of data we
collected, the tools used to do it and the data collection procedure.
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Figure 1: Experimental Protocol. Participants performed
each activity during 3 minutes, with no particular order.

3.1 Collected Data and Tools
For each participant, we recorded data from the accelerometer and
gyroscope sensors. To collect sensor data, we used the eSense ear-
buds developed by Kawsar et al. [22] at Nokia Bell Labs. The eSense
earbuds are equipped with 6-axis Inertial Measurement Unit (IMU)
sensors, comprised of 3-axis accelerometer and 3-axis gyroscope
sensors [5]. Being worn on the ear, the eSense is suited for gath-
ering sensor data for detecting human gestures in an unobtrusive
and continuous manner.

The acccelerometer sensor measures the acceleration of the de-
vice in G-force [5]. The gyroscope sensor measures the rotation
of the device in degrees per second (deg/sec) [5]. Acceleration and
gyroscope data measured from ear-worn devices have been shown
to reflect the movements of the head and facial muscles [1, 21, 23].
Thereby, they seem suitable to detect whether a person is interact-
ing with another individual or not. The eSense device also contains
a microphone sensor, which could be used to detect verbal activities
during social interactions such as e.g., speaking. However, micro-
phone use raises privacy concerns for users [24, 26] and is not
suitable to detect non-verbal types of interactions (e.g., nodding).

To collect the sensor data, we use the eSense app1. The eSense
app is a smartphone application developed for the Android operat-
ing system. The application was initially implemented by Islam et
al. [20] and then extended by Frohn et al. [10]. The app connects
via Bluetooth Low Energy (BLE) to the eSense earbuds and obtains
the sensor data. We set the sampling rate of the sensors to 25 Hz.

3.2 Participants and Procedure
We recruited 10 participants (6 females and 4males). Themajority of
the participants were between 18 - 34 years old, and one participant
was above 55 years old. The participants had different occupations
such as e.g., worker (3), postdoctoral researcher (1), Ph.D. student
(1), and University student (5).

Before meeting each participant, we charged the eSense and the
mobile phone. Previous to the experiment, the researcher responsi-
ble for running the data collection, explained the study goal and
the data collection procedure to the participant. All participants
signed an informed consent form. The experimenter provided the
left earbud to the participant and instructed how to wear it. The
left eSense earbud was then connected to the Android application.
The participant was then instructed to first select the activity they
wished to perform, and then to select the start button on the app
to record the sensor data. At the end of recording an activity, the

1https://github.com/SabrinaFrohn/Esense

participants stopped the data recording and repeated the same
procedure for another activity.

The participants performed five activities, namely, nodding, speak-
ing, eating, standing still, and head shaking. We choose these ac-
tivities to investigate whether verbal and non-verbal interaction
activities (e.g., speaking and nodding) are distinguishable from other
head and mouth-related activities (e.g., eating, head shaking) as well
as no activity at all (e.g., standing still). The participants performed
each activity for 3 minutes, one after the other, and they were free
to pick the order in which the activities were performed. A simple
diagram of this procedure can be seen in Figure 1.

4 DATA ANALYSIS
The main goal of our work is to develop a method to recognize
human verbal, non-verbal interactions or no interactions using
inertial signals. In this section, we describe the end-to-end deep
learning pipeline we developed as well as the evaluation procedures,
metrics and baselines used.

4.1 Data Pre-processing
To pre-process the signals, we follow common pre-processing steps
used in the literature for human activity recognition from inertial
signals [5]. In particular, after dividing the dataset into train and
test splits, we segment the sensor data for each split into 4 seconds
windowswith 75% overlap. After the segmentation, our final dataset
contains 1210 speaking samples, 1162 nodding, 1272 eating, 1179
head shaking and 1127 standing still. The measurement unit of
acceleration data is converted to ± 4g and gyroscope data to ± 500
deg/s directly in the application used to collect the data.

4.2 Convolutional Neural Network (CNN)
We developed an end-to-end CNN, which takes as input the 4-
second windows of raw accelerometer and gyroscope signals (see
Figure 2). The accelerometer and gyroscope sensor data is first
processed by three convolutional layers, each with a kernel size
of 7, 128 feature maps and ReLU activation function. These layers
learn feature representation from the raw sensor data. The output
of the last convolutional layer is then flattened and provided as
input to a max pooling layer. To avoid over-fitting, we employed
dropout regularization with dropout rate of 0.5. The output of the
last layer of the model is provided as input to a sigmoid function,
which returns a k dimensional output with estimated probability
between 0 and 1, where k is the number of activity classes, which
is 3 (non-verbal, verbal, or other).

4.3 Evaluation Procedures
To evaluate the performance of the CNN classifier, we follow com-
mon procedures in machine learning [14, 27]. In particular, we
investigate three validation procedures described as following.
Leave-one-part-out (LOPO) validation procedure uses the data of
all participants, except one, and the first 80% of the data for each
activity from the left-out user in the training set. The remaining
20% of each activity of the left-out user is used for the test set.
The procedure is repeated for all participants and the results are
reported as average of all iterations. This approach verifies the
ability of the model to generalize to unseen data of a known user. In

https://github.com/SabrinaFrohn/Esense
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Figure 2: Overview of the end-to-end deep learning pipeline. The raw acceleremeter and gyroscope data collected from eSense
earbuds is provided as input the CNN. The model classifies each data sample as a verbal, non-verbal or other activity.

addition, it avoids the temporal leak issue, discussed in [7], which
refers to situations when a model is trained on data from the future.
With this approach, we ensure that the test set is posterior to the
data in the training set.
Leave-one-activity-out (LOAO) evaluation approach uses all the
data of all users, except one activity of one user, in the training set.
The left-out activity of the user is kept as the test set. The same
procedure is repeated for all activities of the left-out user and for
all the users. We report the classification results as the average of
all iterations. The main goal of this technique is to avoid having
segments from a same trace (e.g., activity) collected from one user
in both training and testing set. This is because adjacent segments
are not statistically independent as discussed in [17]. This approach
verifies the ability of the model to recognize new activities from a
known user by learning the presence of a particular activity in the
training set from other users.
Leave-one-subject-out (LOSO) validation scheme uses the data of all
users except one in the training set and the left-out user as the test
set, as used in [23, 24]. This procedure is repeated for all the users in
the dataset. We report the classification results as the mean metrics
for all users. This validation procedure ensures that the activities
performed by the same user are not present simultaneously in the
train and test sets. With this technique, we aim to investigate the
generalization of the model to new users.

4.4 Evaluation Metrics
To evaluate the performance of the model, we use accuracy, bal-
anced accuracy and F1. Accuracy quantifies the number of samples
correctly classified by the model [27]. Balanced accuracy score is
defined as the average of recall score obtained in each class [4].
This score is suitable to compare the performance of imbalanced
datasets because it also takes into consideration the minority class.
To further explore the performance of the classifier in all the classes,
we report also the F1 metric. The F1 score is the harmonic mean of
precision and recall [27].

4.5 Baseline Classifiers
We compare the performance of the CNN with Random Guess (RG)
and Biased Random Guess (BRG) baselines. RG provides a classi-
fication uniformly at random. BRG takes into consideration the
distribution of the classes in the training set and generates a biased
prediction. In particular, BRG always predicts the most frequent
label in the training set, as used in [11].

5 RESULTS
In what follows, we present and discuss the evaluation results. We
first report the performance of the CNN using different evaluation
procedures and baseline classifiers described in Section 4. We then
investigate the performance of each sensor separately (unimodal)
and their combination (multimodal).

5.1 Evaluation Procedures Comparison
We first compare the performance of the CNN model using LOPO,
LOAO and LOSO validation techniques. Figure 3 shows the balanced
accuracy of CNN and baseline classifiers for each evaluation tech-
nique. These results imply that it is feasible to use ear-worn devices
to distinguish between verbal, non-verbal and other activities per-
formed during social interactions. Overall the classification results
using LOPO are significantly higher than using LOAO or LOSO. In par-
ticular, the CNN has a balanced accuracy of 80%, which is 25 and 39
percentage points increment from LOSO and LOAO validation tech-
niques. As expected, the presence of annotated data from the test
user allows the model to achieve a higher performance. Therefore,
future systems that aim to distinguish between verbal, nonverbal
and other activities using earbuds, should first train the model with
data from the user to avoid the cold start problem. The performance
drop of the CNN when using the LOSO or LOAO techniques, suggests
that such systems are difficult to generalize to the data of a new
user or new activity of a user. Given that LOPO validation procedure
provides the best results, in the next experiments we present more
detailed results for this validation procedure.

5.2 Comparison to Baseline Classifiers
Figure 4 shows different classification metrics for RG, BRG and
CNN classifiers, using the best validation procedure explored in
this work, LOPO. In particular, balanced accuracy for the CNN is 80%,
36% for the RG and 33% for the BRG. Our model shows 44 and 47
percentage points increment compared to RG and BRG classifiers.

Figure 5 shows the balanced accuracy for each participant using
the LOPO validation approach and the CNN, as the best model
available among those tested. We observe that the performance of
the CNN for the majority of the users is higher than 60%, with the
exception being users P01 and P03.

5.3 Unimodal vs Multimodal
In this set of results, we investigate the classification performance of
training with single (unimodal) and multiple sensors (multimodal).
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Figure 3: Classification results of CNN model using leave-
one-part-out (LOPO), leave-one-session-out (LOSO) and leave-
one-user-out (LOUO) validation techniques.
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Figure 5: Balanced accuracy of CNN model for each partic-
ipant using accelerometer and gyroscope signals as input
and LOPO validation procedure.

Unimodal refers to experiments where only one sensor’s data (e.g.,
accelerometer) is used as input to the CNNmodel. Multimodal refers
to experiments using both accelerometer and gyroscope data. Fig-
ure 6 presents the balanced accuracy scores obtained for unimodal
and multimodal approaches using the LOPO validation procedure.
The balanced accuracy for the accelerometer data is 75%, for the
gyroscope data is 69%, and for their combination (accelerometer
and gyroscope) is 80%. We observe that the performance of the
multimodal classifier is higher than the performance of unimodal
classifiers by 5 and 11 percentage points respectively. These results
imply that combining data from accelerometer and gyroscope sen-
sors allows recognizing user’s interactions better than using only
one of these sensors. This outcome highlights the importance of
considering not only the movements but also the rotation angle
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Figure 6: Comparison of the performance of the CNN
model using only accelerometer, only gyroscope or both as
input.

of the device during these activities, which is in line with other
end-to-end deep learning studies on activity recognition [16].

6 LIMITATIONS AND FUTUREWORK
An important limitation of our study is that it relies on data col-
lected in a controlled laboratory setting. This might not reflect the
challenges of collecting such data in real-world scenarios. In future
work, we plan to run a larger study in naturalistic settings and
verify the generalizability of our approach to new settings where
users’ movements are not constrained. In addition, we plan to in-
vestigate the relationship between the frequency of occurrence of
such activities to participants’ memory recall.

We segmented accelerometer and gyroscope sensor data using a
sliding window of 4 seconds with 75% overlap. Other studies, like
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[20], used different window and step sizes. We did not investigate
the effect of these variables on our results. In future work, we
plan to experiment with different segmentation strategies (e.g.,
overlapping, non-overlapping) and window sizes used in [24, 25].

7 CONCLUSIONS
Social interaction presents an interesting feature for identifying
moments that lend themselves to memory cue generation. Instead
of using video, audio, or location tracking technology, we envision
the use of unobtrusive inertial sensors to identify moments of social
interaction – both verbal and non-verbal.

While end-to-end deep learning offers the possibility to build
activity recognition models without feature engineering, it may
also require larger datasets to train those model. Since the dataset
used in this study is relatively small, in the future we plan to imple-
ment shallow, feature-based classifiers. Another option would be to
increase the size of the dataset and to implement other end-to-end
deep learning architectures.
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