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Facial EMG sensing for monitoring 
affect using a wearable device
Martin Gjoreski1*, Ivana Kiprijanovska2, Simon Stankoski2, Ifigeneia Mavridou2, 
M. John Broulidakis2, Hristijan Gjoreski2,3 & Charles Nduka2

Using a novel wearable surface electromyography (sEMG), we investigated induced affective states by 
measuring the activation of facial muscles traditionally associated with positive (left/right orbicularis 
and left/right zygomaticus) and negative expressions (the corrugator muscle). In a sample of 38 
participants that watched 25 affective videos in a virtual reality environment, we found that each of 
the three variables examined—subjective valence, subjective arousal, and objective valence measured 
via the validated video types (positive, neutral, and negative)—sEMG amplitude varied significantly 
depending on video content. sEMG aptitude from “positive muscles” increased when participants 
were exposed to positively valenced stimuli compared with stimuli that was negatively valenced. In 
contrast, activation of “negative muscles” was elevated following exposure to negatively valenced 
stimuli compared with positively valenced stimuli. High arousal videos increased muscle activations 
compared to low arousal videos in all the measured muscles except the corrugator muscle. In line with 
previous research, the relationship between sEMG amplitude as a function of subjective valence was 
V-shaped.

Remote solutions for timely detection and improved management of mood disorders could positively impact 
the lives of over one hundred million people in the EU alone and reduce healthcare costs. In 2018, the European 
Commission reported that a hundred million Europeans were experiencing mental health problems, including 
anxiety disorders, depression, drug/alcohol use, and bipolar disorder. Associated costs amounted to €600 bil-
lion, more than 4% of the EU’s  GDP1. This situation was further aggravated by the COVID-19 pandemic, which 
has contributed to an increased prevalence of mental ill-health2. The need for robust affect analysis systems for 
researchers and healthcare professionals is clear.

Modeling emotions using a circumflex model of core  affect3 involves recording markers or “fingerprints” 
of arousal and valence. Such markers include measurable psychological and physiological changes in the body 
during an emotional  response4. For example, the fear response tends to combine activation of the motor func-
tions, the autonomic nervous system (often linked to psychological arousal), and specific facial muscle activa-
tion (often linked to emotional valence). These markers are then mapped dimensionally in the arousal-valence 
2D space. Affect monitoring systems have been developed using data from physiological sensors, including 
electroencephalogram (EEG) sensors, galvanic skin response (GSR) sensors, electrocardiogram (ECG) sensors, 
electromyography (EMG) sensors, electroencephalogram (EEG) sensors, voice analysis, and video  analysis5–11.

Our face is considered one of the primary emotion expression mediators, and as such, it has been explored 
as the primary marker of  valence12. Relevant to the dimensional model of affect, the zygomaticus major and the 
corrugator muscles have been extensively investigated to differentiate positive and negative valence, due to the 
muscle’s role in smiling and frowning  respectively13,14. There is, however, an ongoing debate as to whether reading 
from those muscles alone can suffice for valence detection or if other muscle groups should also be  added15,16. 
The frontalis or “brow” muscle is responsible for the rising movement of our eyebrows, stretching on top of our 
forehead. Such movements are attributed to dynamic expressions of generalized fear, anger, and surprise, which 
could be of ambiguous valence. The measurement of the activation of multiple facial muscles in parallel could 
allow the discrimination between facial activations from which affective states could be inferred.

Surface EMG (sEMG) has frequently been used to measure muscle contractions using sensors applied directly 
on the skin. sEMG detects changes in surface voltages on the skin when muscle activation occurs. In part due to 
its ability to be applied non-invasively and high temporal sensitivity, facial sEMG has been used extensively to 
measure facial expression-derived emotional  state17,18. However, such systems are not without their limitations. 
Traditionally, tethered, adhesive-based sensors often require the application of conductive gel, or the use of 
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electrodes ill-suited to recording from what are relatively small muscles in the  face19. This can lead to long setup 
types and electrodes becoming detached from skin.

This study investigates the association between facial sEMG and subjective and objective affect, using a novel 
wearable sEMG sensing device in VR environments. We used a set of dry, arrayed sEMG sensors (emteqPro)20–22, 
attached to a Pico Virtual Reality (VR) headset. During the experiments, physiological recordings and subjective 
self-reported data were collected from participants following exposure to videos varying in arousal and valence. 
Left and right-lateralized EMG activation readings from sensors overlapping the orbicularis, zygomaticus, and 
corrugator muscles were recorded (Fig. 1). The study had two objectives. The first was to explore the relationship 
between facial EMG activation, the emotional content of the video (arousal/valence) and self-reported arousal 
and valence provided retrospectively after each video clip. The second was to explore the relationship between 
facial EMG activations and a predefined categorical type rating for each video (either “positive”, “negative” or 
“neutral”).

The experimental results showed that for each of the three conditions examined (subjective valence, subjec-
tive arousal, predefined video type), sEMG signal amplitude varied depending on the video affective content. 
Facial muscle activation associated with “positive expressions” (i.e., smiling) increased in periods with positively 
valenced content compared with negatively valenced content. In contrast, facial muscle activation associated with 
“negative expressions” (i.e., frowning) was higher during periods with negatively valenced stimuli compared to 
periods with positively valenced stimuli. High arousal videos induced increased muscle activations compared to 
low arousal videos in all the measured muscles except the corrugator muscle. For the corrugator muscle, some 
level of activation was observed both during the low arousal and during the high arousal videos.

These results confirmed the link between facial muscle activation and subjective and objective affect, while 
also demonstrating that dry EMG sensor fixed in a pre-set array can be used to monitor affective states in 
VR environments. These conclusions contribute to affect sensing in VR, which has many potential use-cases, 
including symptom monitoring during VR-delivered therapy, improved affect analytics in VR gaming, affective 
Human–Computer Interaction (HCI), and improved avatar-based social interactions in the  metaverse23.

Results
Experimental validity. In the study, 25 videos were presented to 38 participants. The videos were selected 
to induce neutral valence with low-arousal (‘neutral’), positive valence with high-arousal (‘positive’), and nega-
tive valence with high-arousal (‘negative’). After each video, participants were asked to self-report subjective 
arousal and valence (on a scale from one to nine). Those were recorded and combined to test the effects of the 
affective video stimuli on the participants’ affect (manipulation check).

Table 1 shows the mean scores per video category. Figure 2 shows the average score for each video presented. 
As illustrated, a consistent differentiation can be seen between each of the three video categories.

Following tests for normality, the self-ratings were then analyzed using Friedman’s tests. Results are described 
firstly for valence scores and then for arousal. Significant results were followed with Wilcoxon’s tests.

Valence scores. Friedman’s tests showed a significant difference between mean subjective valence scores of the 
three conditions, (neutral, negative, and positive; ch2 (2) = 67.46, p < 0.001). The mean rank for the neutral cat-

Figure 1.  Example experimental session and sensor data collected for one subject. The lines represent the 
normalized sensor amplitudes for the five EMG sensors (left orbicularis, left zygomaticus, corrugator, right 
zygomaticus, and right orbicularis) and their average value. The session consists of 25 short videos.

Table 1.  Average self-reported valence and arousal scores per video category.

Valence Arousal

Mean neutral 4.65 ± 1.11 3.41 ± 1.65

Mean negative 3.18 ± 1.70 6.67 ± 1.40

Mean positive 6.60 ± 1.26 5.88 ± 1.48
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egory was 1.81, the mean rank for the negative category: was 1.21, and the mean rank for the positive category: 
was 2.98. Wilcoxon tests showed that valence scores in the negative category were lower than in the neutral 
category (z = 4.664, p < 0.001), and positive category (z = 5.602, p < 0.001). The positive category was rated the 
highest and showed a significant difference to the neutral category (z = 5.646, p < 0.001).

Arousal scores. Friedman’s tests showed a significant difference between the mean subjective arousal scores for 
the three conditions: neutral, negative, and positive (ch2 (2) = 62.65, p < 0.001). The mean rank for the neutral 
category was 1.05, the mean rank for the negative category: 2.71, and the mean rank for the positive: 2.24. As 
with the valence scores, all categories were found to differ significantly (Negative–Neutral: z = − 5.644, p < 0.001, 
Positive–Negative: z = − 3.71, p < 0.001, Positive-Neutral: z = − 5.62, p < 0.001).

Results appeared to confirm that all video categories were significantly different from each other in terms of 
self-reported arousal and valence. Each video category succeeded in inducing the intended valence and arousal 
in the participant (neutral valence with low-arousal for the ‘neutral’ category, positive valence with high-arousal 
for the ‘positive’ category, and negative valence with high-arousal for the ‘negative’ category). We concluded that 
the affect manipulation check was successful, and the self-ratings, together with the video category names (video 
types), were used as ground truth for further analysis.

Is the wearable EMG sensing device appropriate for differentiating positive versus negative subjective valence?
Figure 3 shows normalized sEMG amplitudes. The x-axis contains six subgroups, the five EMG sensors (from 

left to right: left orbicularis, left zygomaticus, corrugator, right zygomaticus, and right orbicularis) and the average 
of the five EMG sensors. Within each EMG sensor, the data is also grouped per subjective valence levels, from 
one (negative valence) to nine (positive valence). The valence levels are also color-coded.

For the orbicularis muscle (L-Orbicularis in Fig. 3), the mean signal amplitude is around 0.20 for the videos 
ranked with the lowest valence level (left most, red boxplot). Signal amplitude decreases following exposure 
to video content viewed subjectively as “neutral” (i.e., self-report of “five” on a nine-point scale of subjective 
valence). As subjective valence increases from neutral to positive (i.e., shifts from six to nine), there is a cor-
responding increase in left-orbicularis sensor activation. The mean amplitude for the two final valence levels 
(eight and nine) is between 0.30 and 0.50, higher than the mean amplitude for the negative valence (between 
0.10 and 0.20). This suggests amplitude of the left orbicularis sensor is lowest for the videos rated as neutrally 
valanced. Compared to the videos with neutral valence ratings (e.g., five), left orbicularis muscle activation 
increases to 0.10 and 0.20 for the videos ranked with negative and reaches its maximum for those ranked with 
positive valence levels. Such V-shaped activation can be observed for all other sensors (left/right orbicularis and 
left/right zygomaticus), notably except for the sensor overlapping the corrugator muscle. For the corrugator, 
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Figure 2.  Average valence and arousal scores per video visualized on the 2-Dimensional affective space.

Figure 3.  Boxplots representing the distribution of the normalized EMG amplitudes for the five EMG sensors 
(left orbicularis, left zygomaticus, corrugator, right zygomaticus, and right orbicularis) and their average 
amplitude, grouped by subjective valence ratings from one (negative valence) to nine (positive valence).
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EMG amplitude is highest for videos judged to be negatively valenced, and lowest for videos judged positively 
valenced. Furthermore, for the videos ranked with valence level 5 (i.e., neutrally valenced), the amplitude of the 
corrugator sensor stays quite high, achieving similar activation as some of the negative valenced videos.

To perform statistical tests, we split videos according to subjective ratings of valence. Those that received 
subjective ratings of 1–4 were categorized as “negative videos” and those that received subjective ratings of 6–9 
were categorized to be “positive videos”. For each of the five sensors, we calculated the mean normalized EMG 
signal amplitude M(s,Vl) , for each video ranked with valence level Vl (where Vl can be Vnegative or Vpositive ), for 
each subject s. Thus, if the subject ranked several videos with valence level Vl , the mean amplitude was calculated 
over all those videos. This procedure led to n = 38 paired samples (one pair [positive, negative] amplitude per 
subject), where one component of the pair represents the mean sensor amplitude for negative valenced videos, 
and the other component of the same pair represents the mean sensor amplitude for positive valenced videos. 
To test whether there is a statistically significant difference in the mean amplitudes of each video type, we used 
the Wilcoxon signed-rank (paired) test with an alpha level of 0.05, FamilyWise Error (FWE) corrected using a 
Bonferroni correction for the six tests (one test for each of the five sensors and another one for their average). 
Results are presented in Fig. 4 which shows all the five sensors and their averaged values. There are statistically 
significant differences among the normalized EMG amplitudes. For negative videos (i.e., valence ratings of 1–4), 
the amplitudes of the sensors left/right orbicularis and left/right zygomaticus are lower, whereas the amplitude 
of the corrugator sensor is higher. On the other hand, for the positive valenced videos, the relation is reversed.

Is the wearable EMG sensing device appropriate for differentiating low versus high subjective arousal?
Figure 5 presents the distributions of the normalized EMG amplitudes via boxplots. The x-axis contains six 

subgroups, the five EMG sensors (from left to right: left orbicularis, left zygomaticus, corrugator, right zygo-
maticus, and right orbicularis) and the average of the five EMG sensors. Within each EMG sensor, the data is 
also grouped per subjective arousal level, from one (low arousal) to nine (high arousal). The arousal levels are 
also color-coded. As reported in the boxplot of the left orbicularis muscle (L-Orbicularis in the figure), the mean 
amplitude is below 0.10 for the videos ranked with the lower levels of arousal (e.g., from one to four). As the 
arousal level increases from low to high (e.g., above six), the amplitude of the sensor also increases, reaching 
mean values just above 0.20. This relation, i.e., low activation for low arousal versus increased activation for high 
arousal, can be observed for all the sensors except the corrugator sensor. For the corrugator, the amplitude has 
similar levels across all videos, regardless of the arousal levels.

Similar to the subjective valence analysis, to perform statistical tests, we split videos judged to be low (subjec-
tive ratings 1–4) and high (subjective ratings 6–9) into two groups. For each of the five sensors and their aver-
aged values, we calculated the mean normalized amplitude M(s,Al) , for each video ranked with arousal level 
Al (where Al can be Alow or Ahigh ) for each subject s. Thus, if the subject ranked several videos with arousal level 
Alow , the mean amplitude was calculated over all those videos. This procedure led to n = 38 paired samples (one 
pair per subject), where one component of the pair represents the mean sensor amplitude for low arousal videos, 

Figure 4.  Wilcoxon signed-rank (paired) test with Bonferroni correction for videos with negative valence 
ratings (1–4) versus videos with positive valence ratings (6–9), applied for each of the five sensors (left 
orbicularis, left zygomaticus, corrugator, right zygomaticus, and right orbicularis) and the average amplitude of 
all five sensors. Statistical significance annotations: * if p ∈ [.05,  10−2); ** if p ∈  [10−2,  10−3); *** if p ∈  [10−3,  10−4); 
and **** if p ≥  10−4.

Figure 5.  Boxplots representing the distribution of the normalized EMG amplitudes for the five EMG sensors 
(left orbicularis, left zygomaticus, corrugator, right zygomaticus, and right orbicularis) and their average 
amplitude, grouped by subjective arousal ratings from one (low arousal) to nine (high arousal).
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and the other component of the same pair represents the mean sensor amplitude for high arousal videos. To test 
whether there is a statistically significant difference in the mean amplitudes for low versus high arousal videos, 
we used the Wilcoxon signed-rank (paired) test with an alpha level of 0.05, FWE corrected using a Bonferroni 
correction for the six tests (one test for each of the five sensors and another one for their average). The results 
of these experiments are presented in Fig. 6. As illustrated, there are statistically significant differences in five 
of the six tests performed. For the low arousal videos, the amplitudes are lower, whereas for the high arousal 
videos, the amplitudes are higher. Only for the corrugator sensor, there is no statistically significant difference 
between low and high arousal videos.

Is the wearable EMG sensing device appropriate for distinguishing positive versus neutral versus negative 
videos?

In the previous analyses (Figs. 5 and 6), we explored the relationship between the EMG amplitudes and the 
subjective video ratings (arousal and valence). In the following analysis, we will explore the relationship between 
the EMG amplitudes and the type of the videos (positive, neutral, or negative).

For each of the five sensors and their averaged values, we calculated the mean normalized amplitude M(s,Wl) , 
for each video type Wl (where Wl can be Wnegative ,Wneutral , and Wpositive ), for each subject s. The calculated values 
represent the mean amplitude levels per subject, measured while the subjects were watching a video of a specific 
type. This procedure led to n = 38 tuples of three values. One value represents the mean sensor amplitude for 
neutral videos, another represents the mean sensor amplitude for positive videos, and the third represents the 
mean sensor amplitude for negative videos. To test whether there is a statistically significant difference in the 
mean amplitudes, for all pairs of videos—neutral versus positive, neutral versus negative, and positive versus 
negative—we used the Wilcoxon signed-rank (paired) test with Bonferroni correction for 18 tests (3 pairs of 
videos × 6 sensing modalities, the five sensors and their average). The results of these experiments are presented 
in Fig. 7. From the figure, it can be seen that the difference in the EMG amplitudes is statistically significant in 
the majority of the cases (16 out of the 18 paired tests). The two tests for which the difference was not statistically 
significant were the tests comparing neutral versus positive and neutral versus negative videos using the data 
from the corrugator muscle. Inversely to those two tests, for the test comparing positive versus negative videos 
using data from the same sensor (corrugator), the difference was statistically significant—the negative videos 
caused higher corrugator activation than the positive videos. From the tests applied over the data of the left/
right orbicularis and left/right zygomaticus sensors, it can be seen that the amplitude of the sensors is lowest for 
the neutral videos, with mean values below 0.20. The activation increases to 0.20 for the negative videos, reach-
ing the highest levels for the positive videos (e.g., above 0.3). This V-shaped activation was also observed in the 
analysis of the subjective valence ratings (Fig. 3).

Figure 6.  Wilcoxon signed-rank (paired) test with Bonferroni correction for videos with low arousal ratings 
[1–4] versus videos with high arousal ratings [6–9], applied for each sensor (left orbicularis, left zygomaticus, 
corrugator, right zygomaticus, and right orbicularis) and their average amplitude. Statistical significance 
annotations: * if p ∈ [.05,  10−2); ** if p ∈  [10−2,  10−3); *** if p ∈  [10−3,  10−4); and **** if p ≥  10−4.

Figure 7.  Wilcoxon signed-rank (paired) test with FWE corrected for each sensor (left orbicularis, left 
zygomaticus, corrugator, right zygomaticus, and right orbicularis) and their average amplitude for comparing: 
neutral versus positive, neutral versus negative and positive versus negative videos. Statistical significance 
annotations: * if p ∈ [.05,  10−2); ** if p ∈  [10−2,  10−3); *** if p ∈  [10−3,  10−4); and **** if p ≥  10−4.
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Discussion
On the V-shaped relation between valence and arousal. It is not a surprise that positively valenced 
videos (e.g., babies, cats, and dogs), induce positive emotion compared with negatively valenced videos. This 
finding was confirmed for the 25 affective videos used in our study. On a valence scale between one and nine, 
negative videos had a mean score of 3.18, neutral videos of 4.65 and positive videos of 6.60. See Table 1 and Fig. 2 
for more details. Furthermore, on an arousal scale between one and nine, the mean scores were 6.67 (negative 
videos), 3.42 (neutral videos), and 5.88 (positive videos). This V-shaped relation between valence and arousal, 
i.e., the valence level increases, and the corresponding arousal starts at a higher level for the negative videos, then 
decreases for the neutral videos, and finally increases again for the positive videos, is in line with related affect 
studies performed on larger cohorts. For example, Kuppens et al.27 examined eight affective datasets (with the 
number of participants ranging from 80 to 1417) and concluded that, on average, there is a weak but consistent 
V-shaped relation of subjective arousal scores as a function of subjective valence scores.

Interestingly, besides the V-shaped relation between the self-reported ratings, our experiments also depicted 
similar V-shaped relation of the EMG facial amplitudes as a function of valence. This relation can be seen both 
for self-reported (Fig. 3) and “objective” valence (type of the videos, Fig. 7). If we consider that subjective arousal 
is related to the intensity of the affective state and that facial EMG amplitude is related to the intensity of the 
muscle activation, then again, this relation comes as no surprise. Similar J-shaped activation for the zygomaticus 
has been reported in related studies that use traditional EMG  sensing14,28.

To explore this V-shaped relation, we present six scatterplots in Fig. 8 (one scatterplot per sensor), and we 
present corresponding Pearson’s correlation coefficients (PCCs) in Table 2. In each scatterplot, the x-axis shows 
subjective valence ratings, the y-axis, normalized amplitude. Each plot also contains a second-order regression 
model fitted over the data points in each scatterplot. The translucent bands around the regression lines show 95% 
confidence interval. One data point represents one user’s average amplitude value at the given valence level. The 
V-shaped relation is visible through the regression lines for the left/right orbicularis, the left/right zygomaticus, 
and the average of the five sensors. The regression line for the corrugator muscle monotonously decreases as the 
subjective valence increases.

To quantity the slopes of the V-shaped relation, we calculated PCCs (and corresponding p-values in brackets) 
in three conditions (see Table 2):

• Negative to Neutral [1–5]—to quantify the left part of the V-shape, i.e., negative to neutral valence, we calcu-
lated the PCC between the sEMG amplitudes and the subjective valence scores from one to five (including 

Figure 8.  V-shaped relation between the subjective valence ratings (y-axis) and sEMG amplitudes (x-axis). 
Each scatterplot corresponds to one sensor (left/right orbicularis, corrugator, left/right zygomaticus, and the 
average of the five sensors).
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one and five). For the orbicularis muscles, the results suggest a weak (r-left = − 0.24 and r-right = − 0.26), but 
statistically significant (p ≤ 0.001) negative relationship. For the rest of the muscles, the relationship is not 
statistically significant.

• Neutral to Positive [5–9]—to quantify the right part of the V-shape, i.e., neutral to positive valence, we calcu-
lated the PCC between the sEMG amplitudes and the subjective valence scores from five to nine (including 
5 and 9). In these tests, there is a strong (r > 0.40) and statistically significant (p ≤ 0.001) positive correlation.

• Negative to Positive [1–9]—to quantify the linear relationship for the corrugator muscle, we calculated the 
PCC between the sEMG amplitudes and the subjective valence scores from one to nine. The results suggest 
a weak (r = − 0.20), but statistically significant (p ≤ 0.05) relation.

Additionally, the Supplementary Fig. S.1 presents the results of the statistical tests performed with 3-class 
subjective valence (negative vs. neutral vs. positive). The results from Supplementary Fig. S.1, and the results 
from Fig. 8 and Table 2, point out to similar conclusions, i.e., the V-shaped relation between subjective valence 
and sEMG data is more pronounced for the orbicularis data. Nevertheless, to the best of our knowledge, this is 
the first study that reports on the V-shaped relation of EMG facial amplitude measured via sEMG as a function 
of subjective (Fig. 8) and objective (Fig. 7) valence both for the left/right orbicularis and for the left/right zygo-
maticus. The corrugator muscle showcases an inversed linear relation between the valence and EMG amplitude, 
which is also related to more traditional EMG-sensing  studies14.

On the study objectives. For subjective valence, activation of the muscles traditionally associated with 
positive expressions (left/right orbicularis and left/right zygomaticus) was increased in periods with high 
valence ratings compared to the activation of the same muscles during periods with lower valence ratings. In 
contrast, activation of the muscles associated with negative expressions, in our case the corrugator, was higher 
during periods with lower valence ratings compared with periods with higher valence ratings. These differences 
were statistically significant.

For subjective arousal, during periods that were rated with low arousal, the amplitudes of the sensors were 
overall lower, whereas during periods with high arousal, the amplitudes were higher. Except for the corrugator 
muscle, these differences were statistically significant for all tested modalities. For the corrugator sensor, there 
was no statistically significant difference between low and high arousal activations.

For the predefined video types, similar findings were observed, i.e., the activation of the muscles related to 
positive expressions (left/right orbicularis and left/right zygomaticus) were higher during the videos catego-
rized as “positive” compared to the activation of the same muscles during videos categorized as “neutral” and 
“negative”. In contrast, activation of the corrugator muscle (typically associated with negative expressions like 
frowning), was higher during videos categorized as “negative” compared with “positive”. The differences were 
statistically significant.

All of the experimental scenarios for which statistical significance was not observed involved the corrugator 
muscle. One explanation for this is the fact that activation of the corrugator muscle is involved in both negative 
(e.g., frowning) and non-negative (e.g., concentrating/focused) facial expressions. An alternative or complimen-
tary explanation could lay in the overlay of facial musculature. While the sEMG electrodes are positioned to 
maximize the quality of measurement of targeted muscles, facial musculature is complex, with several muscles 
overlaying one on top of another. Therefore, isolated measurements of the targeted muscles can’t be guaranteed 
simply because even relatively small electrodes can easily end up overlapping multiple muscles which may have 
opposing directions of travel. The corrugator muscle is positioned just below the frontalis muscle but is involved 
in very different facial expressions (i.e., frowning vs brow raised).

Conclusions and implications for future work
We investigated the association between facial sEMG, subjective and objective affect, using a novel wearable 
sEMG sensing device in VR environments using a cohort of 38 participants that watched a selection of a total 
25 affective video stimuli validated in independent  studies24,26. The experimental results showed that for each 
of the three conditions examined (subjective valence, subjective arousal, predefined video type), sEMG signal 
amplitude significantly varied depending on the affective content of the video being watched. Activation of 
muscles associated with positive affect (left/right orbicularis and left/right zygomaticus) was increased during 

Table 2.  Pearson’s correlation coefficient (and corresponding statistical significance in brackets) for the 
relation between subjective valence and sEMG amplitudes. The subjective valence is represented in three 
variations: Negative to Neutral [1–5], Neutral to Positive [5–9], and Negative to Positive [1–9]. Statistical 
significance annotations: * if p ∈ [.05,  10−2); ** if p ∈  [10−2,  10−3); *** if p ∈  [10−3,  10−4); and **** if p ≥  10−4. 
Significant values are in [bold].

Subjective valence

Orbicularis Zygomaticus

Corrugator Sensors averageLeft Right Left Right

Negative–Neutral [1–5]  − 0.24 (**)  − 0.27 (**) − 0.06 (n.s.) − 0.11 (n.s.) − 0.13 (n.s.)  − 0.2 (*)

Neutral–Positive [5–9] 0.64 (***) 0.61 (***) 0.41 (***) 0.45 (***) − 0.02 (n.s.) 0.53 (***)

Negative–Positive [1–9] Not suitable for correlation analysis (non-linear relation-
ship)  − 0.20 (***) –
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positive periods compared to negative periods. Similarly, activation of these muscles was higher during periods 
with high arousal compared to periods with low arousal.

Another finding was linked to the V-shaped relation between valence and arousal—a relation previously 
known in the context of subjective arousal and valence  ratings27. J-shaped activation of the zygomaticus muscle 
has been reported also in traditional EMG  studies14,28. Our experiments depicted similar relation of the sEMG 
facial amplitudes as a function of valence, not just for the zygomaticus muscles, but also for the orbicularis 
muscles.

The presented analysis depicts the average differences in sEMG amplitudes measured in a group of 38 partici-
pants when presented with affective video stimuli in a VR environment. The next step would be to move from 
the group-based analysis to a personalized and real-time analysis of facial expressions and affect. Such advanced 
analytics would include real-time data processing, dynamic segmentation, and feature extraction, coupled with 
machine-learning algorithms that can recognize affect at a high-frequency rate (e.g., 1 Hz). Another promising 
direction includes multimodal affect recognition. Although the face is known to be the richest source of valence 
information as well as affect as a  whole29, there are additional physiological indicators that can provide affective 
information. Whenever users are exposed to an affective stimulus, their affect is also expressed through physi-
ological cues including the activity of the heart, the brain, the body, and the  eyes30. Also, facial expressions do 
not always reflect how users are feeling. Therefore, by using a multimodal approach, we can get a deeper under-
standing of how the users are responding to a given stimulus (e.g., video or mental health therapy). For example, 
when analyzing the nature of a particular video, e.g., positive or neutral, it is important to know if the user is 
focused on the part of the video that should elicit the expected affective response. For this purpose, by combining 
eye tracking with sEMG data, we could recognize more accurately the type of the video stimulus (e.g., positive, 
negative, or neutral). Group-based analysis should provide more objective recognition of video types, whereas 
personalized analysis should provide more information on user-specific preferences.

The findings of this study have a direct implication in current VR/Augmented Reality (AR) applications 
where scenario creators can benefit from automatically monitoring users’ affective responses (e.g., the entertain-
ment industry). For example, VR/AR creators could automatically measure which segments of the content are 
exciting (e.g., higher arousal), which segments are boring (e.g., lower arousal), which segments induce positive 
affect (e.g., positive valence), and which segments induce negative affect (e.g., negative valence). Another more 
impactful use case involves remote solutions for mental health studies. Researchers and healthcare profession-
als could run longitudinal remote studies with mental-health patients. Such a study could monitor the users’ 
affective responses while performing some tasks (either in VR, or potentially VR/AR) specifically designed to 
help the users combat depression. The remote affective feedback from the sEMG sensors could be a real-time 
indicator of whether the tasks are helpful for fighting depression. Similar studies could be performed in VR/
AR-based exposure therapies for combating phobias. Whichever the use case is, such affect monitoring systems 
should include ethics, fairness, model explainability, and accountability at their core.

Methods
Emotions and affect. Scientific research on emotions was introduced back in 1868 when Charles Darwin 
undertook a study to prove that humans have an innate and universal set of emotional expressions. In 1872 the 
study was published in his book “The Expression of the Emotions in Man and Animals”31. In 1987, the question 
“Can computers feel” was  raised32. In the early 1990s, Picard published her book “Affective Computing”33, which 
many consider the start of this scientific field. Yet three decades after publication, with Affective Computing now 
a well-established research field, accurately modeling how a person feels remains a challenge.

When analyzing human emotions and affective states, two different approaches can be taken, a discrete 
approach or a continuous approach. In the discrete approach, the emotions are represented as discrete and 
distinct states, i.e., anger, fear, sadness, happiness, boredom, disgust, and  neutral34. Although commonly used 
in commercial settings, a frequent failure in replication across individuals has called the universality of discrete 
emotions into question. A handful of recent meta-analyses on autonomic physiology, behaviors, and brain imag-
ing, as well as electrical stimulation studies, intracranial recording studies, and brain lesion studies in humans, all 
report that, to date, no consistent and specific biological or behavioral fingerprints (i.e., no biological essences) 
for different categories of emotion, like anger, sadness, and  fear35,36. Consequently, researchers have argued that 
emotions and emotional expressions are not  universal35,37. Instead, most studies in Affective Computing utilizing 
multimodal methods analyze affective states using the dimensional  approach38. Based on this approach, emo-
tional states and their intensities are described as phenomenological reactions to an experience, modeled along 
a continuum. The most popular is the dimensional model of pleasantness (Valence), and activation (Arousal) 
model, or else Russel’s circumflex model of core  Affect3. Arousal and valence are dissociable constructs that 
describe an experience by how positive (high valence) to negative (low valence) it is perceived, and intense that 
feeling was, ranging from soothing/calming (low arousal) to exciting/agitating (high arousal). Put together this 
dimensional approach has been widely used for the development and visualization of affect detection systems 
as well as for the annotation of user self-ratings which is still considered as ‘ground truth’39–41.

Participants. A group of 38 healthy volunteers, 14 females and 24 males, with a mean age of 33.4 ± 13.6 were 
recruited to participate in the experiment. The inclusion age range was 16–68 years, but all recruited participants 
were above 18 years old. Detailed demographic information about the recruited participants is available in the 
Supplementary Table S.1. Exclusion criteria for recruitment were the presence of cardiovascular conditions and 
the use of medications. Ethical approval was obtained from the Bournemouth University Ethics Committee on 30 
November 2020 (Approval No. 33494). All participants also provided written informed consent before participat-
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ing in the study. The experiment was conducted following institutional ethical provisions and the Declaration 
of Helsinki.

Video Stimuli. We used 25 video stimuli to manipulate participants’ affective states. A short description of 
the videos and the validation studies is provided in Supplementary Table S.2. A combination of video stimuli 
was selected from the public video library by Samson et al.24. The videos were validated by 411 subjects in that 
initial study, and additional validation with 82 participants was performed in another  study25. For our study, the 
neutral, the high negative, and the high positive arousing videos were utilized. One negative video was added 
from a study by Gnacek et al.26, and seven new positive videos were introduced. The positive videos were intro-
duced because the existing positive videos were of poor quality. Overall, the video selection was intended to 
elicit three distinct levels of valence responses (negative, neutral, and positive). Thus, a selection of videos was 
made per valence category. Six videos represented negative content, nine represented positive content, and ten 
represented neutral content. The ten neutral videos were randomly split into group one, shown at the beginning 
of the experiments, and group two, shown after the negative videos. The order of the videos was: five neutral 
(overall duration of 76 s), six negative (overall duration of 93 s), five neutral (overall duration of 81 s), and nine 
positive videos (overall duration of 78 s).

Additionally, we performed validation of the videos using the self-ratings reported by the participants 
recruited in this study. The total duration of the videos was 338 s, with a mean and standard deviation of 
12.08 ± 8.17 s. All videos were displayed in a VR environment, resembling a VR home cinema. The VR environ-
ment contained a screen where the videos were presented, while low to medium brightness was chosen for the 
remaining room to avoid distraction.

Apparatus. For data collection, we used the  emteqPro  device20–22. The device comprises a facial electro-
myographic (EMG), a photoplethysmographic (PPG), and an inertial measurement unit (IMU) sensor inte-
grated within a soft frame that fits on the face of the wearer. The device was inserted into a Pico VR headset. 
The emteqPro mask incorporates seven facial EMG electrodes for capturing facial muscle activation. Those are 
positioned to overlap the frontalis (left and right side of the forehead), orbicularis (left and right side of the eyes), 
zygomaticus (left and right side of the cheeks), and corrugator muscles (Fig. 9). In this study, we analyzed only 
the data coming from the EMG sensors. Sensor data from the frontalis sensors was not included in this analysis.

Experimental scenario. Prior to starting the data collection procedure, all participants were introduced 
to the experiment, the task, and the equipment. Then, they were asked to remove any skin products (i.e., make-
up) or hair from the face to ensure good sensor contact for the EMG measurements. Each participant was also 
instructed on how to fit and wear the VR headset, and a short training session was offered to ensure participants 
were familiar with the self-rating task and understood what Arousal and Valence meant.

All participants watched the videos in the same order within each category. There was a 10 s break between 
each video, during which participants were asked to self-rate their emotional state after watching the video 
stimulus. Participants rated how they felt in terms of emotional valence and emotional arousal on a scale from 
one to nine. On the valence scale, one denoted a very unpleasant emotion, five denoted a neutral emotional state, 

Figure 9.  The figure on the left depicts the emteqPro mask installed into the Pico Neo 2 Eye Virtual Reality 
(VR) headset. The figure on the right depicts the mapping between emteqPro’s EMG sensors and facial muscles.
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and nine denoted a very pleasant emotion. On the arousal scale, one denoted very low arousal, five denoted a 
medium level of arousal, and nine denoted very high arousal.

EMG data pre-processing. Surface EMG (sEMG) is electrophysiological recording technology used for 
the non-invasive detection of muscle excitation and  activation42. The recorded signal represents the electrical 
activity generated by a contracting muscle, which can be detected by placing electrodes on the skin over the mus-
cle of interest. In fact, the signal can be defined as the algebraic sum of the motor unit action potentials generated 
by the active motor units, which the electrodes detect over the  skin43. In this study, the sEMG sensors were used 
to measure the electrical activity of motor units in the striated muscles of the face.

Spontaneous sEMG activity of the facial muscles generally has a small amplitude and may be contaminated 
by motion artifacts and nonmyogenic potentials associated with eye movements, endogenous eyeblinks, brain 
activity, retinal responses, and salivary gland  activity44. Additionally, noise caused by electromagnetic interfer-
ence can affect the sEMG signal. To increase the quality of the obtained sEMG signals, we performed signal 
de-noising. The idea is to improve the signal-to-noise ratio while causing as little distortion to the informative 
sEMG components as possible. The artifacts caused by motion and nonmyogenic potentials are generally limited 
to the low-frequency region of the EMG power spectrum (0–20 Hz region). These artifacts can be easily elimi-
nated by using a high-pass filter. However, because the EMG power spectra of the facial muscles show relatively 
large real EMG components near the low-frequency  region45, a cut-off point for each muscle should be carefully 
selected. In our work, we selected the cut-off points for the different muscles based on the work presented  in44. 
We utilized a high-pass cut-off frequency of 30 Hz for the corrugator supercilii and a high-pass cut-off frequency 
of 20 Hz for the orbicularis oculi and the zygomaticus major. The noise caused by electromagnetic interference 
has visible components at 50 Hz and its harmonics. To reduce the influence of electromagnetic interference while 
retaining the informative sEMG components, we utilized a method based on spectrum  interpolation46. The idea 
is that the magnitude of the frequency components affected by electromagnetic interference can be approximated 
by interpolating the signal’s amplitude spectrum using the magnitude of the stable neighboring components. 
Regarding the upper end of the sEMG frequency components, Boxtel et al.44 demonstrated that the signal power 
above 500 Hz is often negligible. Therefore, we employed a low-pass filter with a cut-off frequency of 500 Hz to 
isolate the uninformative part of the signal and ensure that unexpected artifacts in the signals would not appear.

Since voltage recorded from a muscle is difficult to describe in terms of level, interpreting muscle function 
directly from raw sEMG signal is challenging. As a result, researchers are primarily interested in the signal’s 
amplitude. The amplitude of the sEMG signal has the potential to provide a measure of muscle force magnitude. 
In addition, the amplitude of a raw sEMG signal is often considered as the sum of the neural drive to the area 
where the electrode is positioned, which is related to the muscle’s excitement. Root mean square (RMS) and mean 
absolute value (MAV) are two commonly utilized methods for amplitude extraction. The RMS represents the 
square root of the average power of the EMG signal over a given period. The MAV represents the average rectified 
value, which is the area under the EMG signal once it has been rectified. It means that all the negative voltage 
values have been converted to positive voltage values. In this study, we analyzed the RMS, which is frequently 
chosen over the MAV value because it represents the power of the EMG signal.

The factors affecting the EMG signal differ across individuals, between days within an individual, and even 
within a day within an individual, in case the electrode setup has been altered. Given the large number of fac-
tors that influence the EMG signal, voltage recorded from a muscle is difficult to describe in terms of a level if 
there is no reference value to which it can be compared. As a result, interpreting the amplitude of the raw EMG 
signal is difficult unless normalization is performed. We performed person-specific min–max normalization. The 
minimum and the maximum values of the signals were calculated over a winsorized data distribution. Winsori-
zation was applied to the EMG signals using their 5th and the 95th percentile. More specifically, all data points 
in the signal with a value lower than the value of the 5th percentile were set to 0, and all data points with a value 
higher than the value of the 95th percentile were set to the value of the 95th percentile. This was done to avoid 
insignificant EMG activations captured by the sensor and to avoid amplitude bursts. After the winsorization, the 
data were normalized between 0 and 1 per subject.

Statistical analysis. The overall analysis was performed in Python in combination with the statannot 
library (version 0.4.4, https:// pypi. org/ proje ct/ stata nnot/). We did hypothesis testing using the Wilcoxon signed-
rank test—a test with a null hypothesis that two related paired samples come from the same distribution. It tests 
whether the distribution of the differences x − y is symmetric around zero. It is a non-parametric version of the 
paired T-test. The p-values were Bonferroni-corrected. The value of n was set to the number of comparisons per-
formed in the specific experiment (n = 6 for the subjective valence and arousal experiments presented in Figs. 4 
and 6; n = 18 for the experiments on predefined video type presented in Fig. 7). The significance annotations 
were represented as: * if p ∈ [0.05,  10−2); ** if p ∈  [10−2,  10−3); *** if p ∈  [10−3,  10−4); and **** if p ≥  10−4.

Data availability
The data and the code are publicly available at: https:// github. com/ emteq labs/ EmgDa taVR. The data includes 
raw 1000 Hz EMG signals and pre-processed EMG signals, ready for statistical analysis.
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