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Abstract—Chronic heart failure represents a global pandemic,
currently affecting over 26 million of patients worldwide. It is a
major contributor in the death rate of patients with cardiovas-
cular diseases and results in more than 1 million hospitalizations
annually in Europe and North America. Methods for chronic
heart failure detection can be utilized to act preventive, improve
early diagnosis and avoid hospitalizations or even life-threatening
situations, thus highly enhance the quality of patient’s life. In this
paper, we present a machine-learning method for chronic heart
failure detection from heart sounds. The method consists of:
filtering, segmentation, feature extraction and machine learning.
The method was tested with a leave-one-subject-out evaluation
technique on data from 122 subjects, gathered in the study.
The method achieved 96% accuracy, outperforming a majority
classifier for 15 percentage points. More specifically, it detects
(recalls) 87% of the chronic heart failure subjects with a precision
of 87%. The study confirmed that advanced machine learning
applied on real-life sounds recorded with an unobtrusive digital
stethoscope can be used for chronic heart failure detection.

I. INTRODUCTION

Cardiovascular diseases (CVDs) encompassing heart attacks

and chronic heart failure, rheumatic heart disease, acute my-

ocardial ischemia, cerebrovascular disease, arterial hyperten-

sion, peripheral artery disease and congenital heart disease,

have shown to be the cause of death for 17.5 million people

according to the World Health Organization report in 2014 [1].

Beside the well known risk factors, such as smoking, obesity,

diabetes and hyperlipidemia, the main reason accounted to

be in high correlation with the CVDs is the population

aging (older population is more prone to CVDs), especially

prominent in the developed countries [2].

Changing the lifestyle and focusing on preventive rather

than on curative medicine can significantly reduce the inci-

dence of CVD. The preventive medicine itself basically relies

on a continuous monitoring of the person’s health. There

is a trend of developing sensors for physiological signals

(Phonocardiogram - PCG, Electrocardiogram - ECG, Elec-

tromyogram - EMG, Electroencephalography - EEG, Capno-

gram, Electrodermal activity - EDA, etc.) monitoring [3] in a

relatively cheap and efficient way, providing the opportunity

of a continuous health control without interfering with the

person’s every day activities.

Most heart diseases can not be simply detected by using

ECG [4]; however, they cause changes to the heart sounds

that can be very useful in aiding the accurate diagnosis [5].

Those changes that may result from a turbulent blood flow,

valvular abnormalities or changes in ventricular compliance,

are known as heart murmurs [2]. The detection of the murmurs

and other abnormal heart sound changes is a problem that

requires high-skilled physicians with deep knowledge obtained

by a long term clinical training process. Phonocardiography

is one of the tools for heart auscultation. The recorded PCG

signal carries even more information that can be heard by the

human ear, even though in the past it has not been very popular

due to the deficiency of methods for appropriate analysis of the

signal features [6]. One of the basic tools in aiding the clinical

diagnosis of heart failure is the determination of plasma levels
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of NT-proBNP. In this paper, we focus on chronic heart failure

(CHF), a condition that is currently affecting over 26 million

people worldwide [7]. In CHF, the heart is unable to pump

sufficiently to maintain blood flow to meet the body’s needs.

A trained physician can recognize CHF from heart sounds

(a third tone S3 being a strong but not exclusive indication),

however, currently the only reliable diagnostic tool is the NT-

proBNP [8] test.

The continuous technological advancement enables

computing-power increase which allow researchers to

improve existing, and come up with new artificial intelligence

methods, which significantly influences our everyday life.

Using state-of-the-art techniques (e.g., deep learning)

computers are able to perform human tasks (e.g., speech

recognition, emotion recognition, object recognition, etc.)

just by analyzing real-life signals (e.g., pictures, videos and

sounds).

Following this trend towards real-life signal analysis, we

are proposing an original methodology for chronic heart

failure detection based on Machine Learning (ML) analysis

of PCG sounds. The sounds are recorded using a professional

digital stethoscope presented in Figure 1, which can transfer

recorded sounds via Bluetooth. We have used a total of 152

heart sounds obtained from 122 different subjects - 23 of

which were previously diagnosed by a physician to have heart

abnormalities. The methodology consists of four procedures:

filtering, segmentation, feature extraction and stacking of ML

classifiers. The applied methodology resulted in an overall

accuracy of 96%, obtaining F-score of 0.97 for the negative

(healthy) class and 0.87 for the positive (unhealthy) class.

The rest of the paper is organized as follows. An overview of

the recently developed methods and achievements in the CVDs

prediction is presented in Section II. The data gathering proce-

dure is presented in Section III. The proposed methodology is

presented in Section IV. Section V presents the experimental

setup and the analysis of the obtained results. In the final

Section VI, the paper is concluded with a short discussion.

II. RELATED WORK

Failure in the presentation of heart sound frequencies and

the differentiation between them, the identification of the

energy variations, the process of signal de-noising, and the

determination of the heart sound components [9] are only few

of the issues that the researchers often confront with when

analyzing the PCG signals. Some of them we address in the

research presented in this paper.

Mainly, the authors distinguish three parts when analyzing

PCG signals. The first part is the segmentation process where

the signals are segmented into S1 and S2 components. S1

represents the events related to ventricular contraction, and S2

marks the end of S1 (the closure of the aortic and pulmonary

valves) and the beginning of ventricular relaxation [5]. In

order to ease the segmentation process, some researchers

apply de-noising techniques (mostly wavelet-based [10]) to

remove the noise caused by the human body itself or by

the environment where the experiment has been performed.

Fig. 1. The digital stethoscope used in the study.

The segmentation process can be either direct or indirect (by

using ECG signal as a reference) [11]. Another segmentation

categorization is by envelope (direct), or by ML (applying

external medical knowledge). Normalized average Shannon

energy [12], [13]; the Hilbert transform; the cardiac sound

characteristic waveform (CSCW) [13]; autoregressive moving

average spectral methods; power spectral density; energy of

wavelet coefficients; complexity signatures; Wigner-Ville dis-

tribution [14], are some of the methods usually used for direct

segmentation. In [15] the authors have used the segmentation

method based on the Matching Pursuit algorithm proposed

in [16] to determine the time location of the beginning and

the end of each cardiac cycle in the signal (the onset and

the offset). The algorithm has shown accuracy of 97.5% for

the onset and 96% for the offset detection [16]. Sometimes

manual segmentation is necessary to find the boundaries [17].

In that case, envelope-based approaches can be avoided and

ML techniques as Hidden Markov Models [18] and Time-

delayed Neural Networks can be applied [19].

Feature extraction is usually the second part in PCG signal

analysis and is crucial to achieve successful classification.

There are two types of features, the first type are those based

on medical knowledge, and the second are based on time-

frequency signal representation. The second type is suitable for

PCG signals due to their non-stationarity, meaning their fre-

quency changes in time [14]. Peak frequency, peak amplitude,

total power, total harmonic distortion, bandwidth, Q-factor,

cepstrum peak amplitude, zero crossing rate, and a few time

duration characteristics considering S1 and S2 components,

are some of the proposed time-frequency features found to

be useful for PCG signal classification (the third and final

part in PCG signal analysis) [20]. Wavelet-based algorithm

has been used to extract some statistical characteristics of the

PCG signal and have been aided by Artificial Neural Network

(ANN) and statistical classifier to select the most appropriate

subset [21].

Variety of ML techniques have been used to classify PCG

signals [22]. Support Vectors Machine (SVM) has been applied

on 198 heart sounds with the purpose of identifying various

types of murmurs. The reported results have shown a total

accuracy of 76.48% for the systolic diseases, and 77.94% for

the diastolic diseases. Back-propagation Neural Networks as
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well as KNN and Naive Bayes have also been used, but they

have shown a lower performance compared to the SVM-based

approach [23]. On the contrary, in another study [20] Naive

Bayes has been found to be the best classifier with 93.33%

accuracy when compared to other ML methods. Probabilistic

approach based on Hidden Markov Models has been proposed

[24] where the classification resulted in 96.25% correctness for

systolic murmurs and 90% for diastolic murmurs. Abnormality

detection system based on SMOTE and AdaBoost algorithm

has achieved 83.33% overall accuracy and 84.92% precision

when classifying the abnormal heart sounds [25]. Similar

to the approach proposed in this paper, in [26] the authors

propose a methodology where the PCG signal is broken into

small overlapping windows. The SVM-based classification of

25 subjects produced overall 80% accuracy [26]. Regularized

logistic regression has been applied on PCG signals from

151 subjects obtained from both mobile phone and electronic

stethoscope [27]. The results showed a sensitivity/specificity

of 77.8%/86.7% for the mobile phone measurements and

a sensitivity/specificity of 81.9%/91.2% for the electronic

stethoscope source. The ability of KNN and fuzzy KNN has

been reported in [28] where a highest accuracy of 99.6% has

been achieved on subset of features extracted by using fisher

discriminant ratio (FDR) feature reduction technique.

III. DATASET

The PCG data in this study has been recorded using a

professional digital stethoscope 3MTM Littmann Electronic

Stethoscope Model 3200. We collected the recordings of 23

people with a diagnosed CHF condition and of 99 people,

treated as ”healthy” - meaning they did not have any medical

condition that would manifest itself in abnormal heart sound.

PCG was always recorded at Erb’s point. The stethoscope

allows recordings of up to 30 seconds long segments. For

some people, more than one segment was recorded in order

to increase the amount of data for the study. The approval of

the medical ethics committee was obtained prior to the study.

The basic demographics of both groups is shown in Table

1, including the comorbidity factors, pre-existing medical

diagnoses, and pre-existing medications.

TABLE I
BASIC DEMOGRAPHIC DATA FOR BOTH GROUPS OF PEOPLE IN THE

DATABASE. AGE, HEIGHT AND WEIGHT ARE GIVEN AS MEAN VALUE ±
STANDARD DEVIATION.

Healthy (99) CHF (23)
Gender 55 F + 44 M 3 F + 20 M

Age 35 ± 11 51 ± 13
Height (cm) 173 ± 9 173 ± 18
Weight (kg) 71 ± 13 80 ± 16

Smoking 11 2
Overweight 9 1

Alcohol 1 0
Any medical condition 19 23
Any medications used 10 23

IV. METHODOLOGY

The proposed methodology is presented in Figure 2. It

consists of: filtering, segmentation, segment-based feature-

extraction, segment-based machine-learning, recording-based

feature-extraction and recording-based machine-learning

phase. The last three phases implement stacking, a ML

technique for combining multiple ML models. Each of these

phases is described in the following subsections.

A. Filtering and segmentation
The raw audio files are filtered using low-pass Butterworth

filter with a threshold 1 kHz. This technique was chosen based

on the study by Choi et al. [13] in which they proposed a

methodology for cardiac sound abnormality detection based

on Shannon energy. The threshold is set to 1 kHz since the

majority of cardiovascular sounds are most likely to occur in

the frequencies below 1 kHz [13]. In addition, noise in audio

recordings usually appears in high frequencies.
For segmentation of the filtered audio signal, we used a

sliding window of 1s with an overlap of 0.5s. This provides

audio segments with a duration of 1s. In addition, for each

segment we calculate the energy in the segment and remove

the audio segments with energy lower than the median energy

in the recording in which the segment belongs. This technique

usually is used in speech processing to discard audio segments

which contain no information [29], but might hurt a machine-

learning method by introducing noise in the data.

B. Segment-based feature extraction
In the segment feature-extraction phase we used feature

brute-forcing, since there are no generally known features

in the field of CVDs detection from raw audio recordings.

From each audio segment, 1582 features are computed. These

features contain information extracted in frequency (e.g., cep-

stral coefficients) and time-domain (e.g., position of maximal

loudness). For extracting the features we used OpenSmile [30],

a tool for extracting numerical features from audio recordings.

OpenSmile first computes low-level descriptors from the audio

signal (e.g., pitch, loudness and audio quality) and different

representations of the audio signal (e.g., cepstrum and linear

predictive coding). Then, it applies statistical functions and re-

gression analysis over the descriptors to generate final feature

vector, which can be used by ML algorithms. The statistical

functions that OpenSmile applies are: extremes (position of

mix/min value), statistical moments (first to forth), percentiles

and duration (e.g., percentage of time the audio signal is above

threshold). After the segment feature-extraction phase, each

segment is represented by a 1582 feature vector which is used

as input to the segment-based ML models. OpenSmile was

previously also used by some of the authors of this paper

when dealing with classification of buzzing sounds of various

species and types of bumblebees [31].

C. Stacking
The stacking module consists of tree phases: segment-

based ML phase, recording-based feature-extraction phase and

recording-based ML phase.
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HES1 HES2 HES3 HES4 HESN-1 HESN

OpenSmile Feature Extraction

FNFN-1F4F3F2F1

Frequency and time-domain features extraction

Classifier1 Classifier2 ClassifierK. . .

Min(P1), Max(P1), Avg(P1), Min(P2), Max(P2), Avg(P2), …, Min(PK), Max(PK), Avg(PK)

. . .

. . .

Meta classifier

Healhty/Unhealthy 
decision

Low-pass filtering

P1(F1) P1(F2) P1(FN). . . P2(F1) P2(F2) P2(FN). . . PK(F1) PK(F2) PK(FN). . .

Raw signal

Sliding-window 
segmentation

Filtering

High-energy 
segments extraction

Segment-based 
features extraction

Segment-based 
features vectors

Segment-based 
ML phase

 Unhealthy class 
probabilities

Recording-based 
features extraction

Recording-based 
ML phase

Prediction

Fig. 2. The methodology overview.

In the segment-based ML phase, several ML models are

build using the algorithms: J48, Naive Bayes, KNN, SVM,

Random Forest, Bagging, and Boosting. The idea behind

combining variety of algorithms is that different algorithms

can model different structures in the data. Each of the seven

ML models takes as input the feature vectors extracted in the

segment feature-extraction phase and outputs a probability for

a segment to be unhealthy.

In the recording-based feature-extraction phase, the output

of the segment-based ML models is aggregated and provided

as input for the recording-based ML phase. The aggregation is

performed using min, max and average over the predictions of

the segment-based ML models. For example, if we use seven

segment-based ML models and if one recording is split into

dozen 1-second segments, for each segment the segment-based

ML models output probability to be unhealthy. The outputted

probabilities are aggregated into 21 features (three functions -

min, max and average are applied over the output of the seven

segment-based ML models, thus 21) for the recording-based

ML phase.

In the recording-based ML phase, a recording-based ML

model is trained. The recording-based ML model gets min,

max, and average probability for the segments in one recording

to be unhealthy from seven different ML models and provides
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Fig. 3. LOSO evaluation - classification accuracy vs. the number of classifiers

the final prediction whether the recording belongs to a healthy

or an unhealthy subject. All ML algorithms are used as

implemented in the WEKA machine-learning toolkit [32].

V. EXPERIMENTAL RESULTS

For evaluation of the method, experiments were performed

using a leave-one-subject-out (LOSO) cross-validation. That

is, the ML models are built using the data of all subjects except

one, which is left out for testing. This procedure is repeated as

many times as there are subjects in the dataset (122) and the

results are averaged. In addition, experiments were performed

with combinations of different types of models in the segment-

based ML phase, from single models to combinations of seven

models built with the algorithms: J48, Naive Bayes, KNN,

SVM, Random Forest, Bagging and Boosting. The algorithms’

parameters were default.

Figure 3 represents the result for the LOSO evaluation. On

the y-axis is the accuracy of the method, and on the x-axis is

the number of classifiers used in the segment-based ML phase.

The red triangle represents the majority class in the dataset

(i.e., 81% of the subjects are healthy). Each gray dot represents

the performance of the method for different combinations of

models in the segment-based ML phase. From the results it

can be seen that the proposed method outperforms the majority

classifier for any combination of ML models. In additions,

the trend line (green dotted line) depicts that in general the

more models in the segment-based ML phase, the better the

performance of the method. However, if chosen smartly, good

performance can be achieved with only two models in the

segment-based ML phase.

Table 2 presents the confusion matrix and performance

metrics (accuracy, precision, recall and F1-score) for the best

performance achieved by the method. The best performance is

achieved by using combination of five ML models (Boosting,

SVM, KNN, Naive Bayes, and J48) in the segment-based ML

phase and Random Forest as meta learner. The rows in the

confusion matrix represent the true class and the columns

represent the predicted class by the method. The numbers in

the confusion matrix represent fractions of the overall number

of instances per class. In addition, it can be seen that both

precision and recall for the ”unhealthy” class are 87%, and

the F1-score 0.87.

TABLE II
CONFUSION MATRIX AND PERFORMANCE METRICS

Acc = 96% Healthy Unhealthy Precision Recall F1-score
Healthy 0.97 0.03 96.97 96.97 0.97

Unhealthy 0.13 0.87 86.96 86.96 0.87

VI. CONCLUSION

We presented a method for chronic heart failure detection

from heart sounds by using a stack of ML classifiers. The ex-

perimental evaluation showed promising results as the method

achieves 96% accuracy for a LOSO evaluation. In addition,

it detects (recalls) 87% of the ”unhealthy” instances with a

precision of 87%. This confirms that chronic heart failure can

be detected using real-life sounds recorded with an unobtrusive

digital stethoscope.

In future, the method will be tested on a larger dataset

gathered by the medical professionals in the study, and also

on an open access database for evaluation of heart sounds

algorithms [9]. In addition, the method will be exploited

to develop personalized models for monitoring patients with

chronic heart failure which would predict when a patient

is supposed to modify the medication treatment in order to

prevent the deterioration of medical condition and thus avoid

the hospitalization. The final application will employ wearable

sensors (e.g., a microphone) connected to a smartphone appli-

cation, that will act as an interface between the patient and

the doctor, thus enabling easier management of the medical

condition.
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