
 1

First Steps Towards an Event-Based
Infrastructure for Smart Things

Marc Langheinrich, Friedemann Mattern, Kay Römer, Harald Vogt

Distributed System Group, Department of Computer Science
ETH Zurich, Swiss Federal Institute of Technology

 8092 Zurich, Switzerland
{langhein,mattern,roemer,vogt}@inf.ethz.ch

ABSTRACT
In this paper we examine requirements for an infrastructure that supports implemen-
tation and deployment of smart things in the real world. We describe a case study
(RFID Chef) where kitchen items and ingredients, equipped with remotely accessible
electronic tags, drive an interactive context-aware recipe finder through the use of an
event-based infrastructure.

Keywords
Ubiquitous computing, RFID tags, events, infrastructure.

INTRODUCTION
The emerging field of Ubiquitous Computing [4] aims at making computers available
throughout the environment, while rendering them effectively invisible to the user.
One of the main goals is to incorporate computing power into everyday objects in
order to create smart things: real-world objects that provide novel ways of accessing
information, react to their environment, or provide new emergent functionality when
interacting with other smart things.

Research efforts in this field can roughly be categorized along three axes, as depicted
in figure 1: Diversity, scale, and
interaction complexity. Research
projects so far have usually traded
diversity (i.e., types of artifacts) for
scale and vice versa, effectively
limiting the potential interaction
complexity of the overall system to
simple one-to-one interactions.

Truly smart environments that fea-
ture a large number of smart things
will require both large scale and
high diversity, thus creating much
richer interaction schemes, where
many-to-many interactions both
between artifacts of the same type
as well as between artifacts of dif-
ferent types need to be addressed.

Scale (number of artifacts)

Diversity (types of artifacts)

Interaction Complexity

Figure 1: Applications involving smart things
can be characterized along three axes: Diversity
(the number of different types of artifacts sup-
ported), scale (the number of instances of each
artifact type), and interaction complexity (the
number of different modes of inter-artifact and
cross-artifact interactions).

 2

So far, research projects typically used ad-hoc approaches when enabling smart
things to interact with their environment. However, with the increase in interaction
complexity, the need for a well-founded interaction infrastructure arises, which will
support much richer interaction models.

In the following sections, we want to examine requirements for such an interaction
infrastructure, propose one solution based on a hierarchical event model, and de-
scribe a sample application that we use to examine our design in a practical setting.

INFRASTRUCTURES FOR SMART THINGS
Smart things need - mostly independent of concrete application scenarios - several
supporting services (e.g., they typically want to interact with the environment or with
other smart things in their proximity). Also, facts about the environment smart things
perceive have to be represented in such a way that the information can easily be
processed and made available to other smart things (perhaps to modify their own be-
havior). This, and many other similar tasks, should not be done by the things them-
selves, but by a supporting infrastructure residing in the environment.

Virtual Counterparts of Real Objects
One observes that more and more objects of the real world are represented in data-
bases or are mirrored in World Wide Web (WWW) servers, which are - at least in
principle - linked together by the Internet. Thus, a large and fast growing information
space - a “one virtual world” - begins to emerge that contains various information
items about real-world objects and in some sense reflects the real world. Such a
global information space about “almost all” everyday objects seems to promise very
interesting new opportunities. Unfortunately, however, this virtual world is largely
unstructured, and it is difficult or often impossible to directly link an artifact with its
corresponding information items in the virtual world.

This would be simpler if each real-world object had its dedicated representation in
the virtual world, and if these virtual counterparts were organized such that they re-

flect in some sensible way the
structure and relations of the real-
world objects they stand for (fig.
2). The virtual counterparts could
be WWW pages (as it is done in
the Cooltown project [5]), thus as-
sociating each artifact with its
homepage, or any other data items
giving things some electronic iden-
tity.

For our ubiquitous computing in-
frastructure for smart things we
postulate that the virtual counter-
parts are organized along the ob-
ject-oriented paradigm - that is,
virtual objects may be structured
into classes, and objects interact by

Virtual Counterparts

Real World Objects

Purely Virtual Object
(e.g., email)

Figure 2: Real-world artifacts are linked through
the infrastructure with their virtual counterparts,
enabling them to interact in the virtual world. Note
that not all objects in the virtual world necessarily
have a corresponding object in the real world.

 3

sending messages to each other which may evoke state-changing methods at the re-
ceiving side. The clear advantage of using an object-oriented representation model is
that relevant aspects of the real world can easily be modeled - in some sense, the vir-
tual world simulates the real world more or less directly with respect to relevant ac-
tions (Note that object orientation was in fact invented with the language Simula
some 35 years ago to facilitate modeling and event-based simulation of real-world
situations!).

Of course, the physical world of artifacts and the virtual world populated by abstract
objects have to be linked together. We deliberately chose to concentrate on events as
the connecting entities gluing the two worlds together: Relevant state changes in the
real world have to be detected and signaled to the virtual world by the generation of
appropriate events. Events will then trigger the virtual counterparts to simulate the
state change.

To automatically detect state changes in the physical world, one needs sensors.
However, low-level sensory information is often not directly useful. Typically, raw
sensory input is therefore processed and combined to form higher-level events that
model real-world actions and thus need to be modeled accordingly in virtual space.

Smart Things and Their Virtual Proxies
How do everyday things become smart, that is, get an electronic identity and some
information processing functionality in addition to their classical, mundane function?
One possibility is to equip them with embedded processors, memory, sensors and
possibly some output device. However, often it is sufficient to put the smartness into
a virtual “proxy” object that resides somewhere in the virtual world - maybe on some
Internet server that has an abundance of storage and processing capabilities.

Also, instead of being integrated into the things themselves, sensors may reside in the
environment. These sensors then have to detect the presence of objects, and perhaps
also any changes in their state, and communicate this to the corresponding virtual
counterparts in the virtual world. For that, it might be sufficient to tag each real-
world thing with a remotely readable label that represents an URL-like pointer. Via
that pointer not only an almost infinite amount of information may be associated to
the object, but also potentially demanding services which are then in fact realized by
the virtual proxy object.

Clearly, merely communicating
events that signal the presence
of things to the virtual world is
not sufficient in all cases.
Sometimes it might be neces-
sary to connect a data stream
from the real-world object's
sensor to an information proc-
essing process residing in its
virtual proxy. Our model does
not preclude, but also not sup-
port such data stream linking.

Figure 3: Typical
form factors for RFID
tags. The particular
tags shown come in a
glass casing in order
to allow attaching
them to metallic ob-
jects or to insert them
below the skin of
animals. (Image
Source: Portolano
Project [13])

 4

Instead, we concentrated on a pure event propagating architecture and used electronic
labels (i.e., radio frequency identification or RFID tags) attached to the objects in our
prototype implementation.

RFID tags feature a small integrated circuit (IC) connected to an antenna and are ca-
pable of storing data (usually a numeric ID) in the IC’s memory. Tags can be read
(and sometimes written) using a magnetic or electromagnetic field emitted by a
fixed-position or mobile reader device over distances ranging from several centime-
ters up to a few meters. Since RFID tags collect the energy to operate from the field
emitted by the reader device, they don’t require an internal power source and can be
produced both with very small form factor and at a very low price [6].

Attaching RFID tags to physical objects allows linking them to arbitrary online in-
formation, very much in the same manner as traditional printed barcodes allow sup-
pliers and vendors to track production, inventory, and sales of goods. However, since
RFID tags can be made much smaller than barcode labels, and because no line of
sight is required for reading (the magnetic and electromagnetic fields only require
relative proximity), such links can be integrated into everyday objects in a much
more unobtrusive manner.

The Necessity of an Infrastructure
While electronic tags create novel ways of linking everyday objects with online in-
formation, most approaches have so far been limited to rather simple scenarios: a
single tag is brought into the vicinity of a tag reader and triggers some sort of action
on a server. As we begin to imagine densely tagged environments where hundreds or
thousands of such objects are present and move in and out of the vicinity of dozens
of tag sensors (both mobile and fixed-position), we need to move away from a simple
action-response model of early prototypes towards a much richer representation.

We are convinced that our object-oriented model of virtual entities allows the realiza-
tion of more complex event-based information structures that can effectively repre-
sent such situations. For example, virtual objects may filter or combine events, and
generate new “super events” that are then propagated to other virtual objects. It is
easily possible to implement virtual objects that have no direct counterpart in the real
world, but provide nevertheless some very useful function within the virtual world
(e.g., event clustering), thus realizing and incorporating some abstract concept. Vir-
tual proxies of real artifacts may interact and form relationships (e.g., when the corre-
sponding real-world artifacts become related in some concrete or abstract sense), and
even pure virtual objects may be generated dynamically to represent new abstract
facts. Furthermore, virtual entities, such as Web pages, email messages or word
documents are easily integrated in such an architecture.

However, an infrastructure for smart things should not only consist of an architecture
to represent objects and events, but also provide various services. Smart things (or
their virtual proxies) may need location information, they want to discover services
in their physical proximity, and they may want to communicate to other (possibly
remote) physical objects. While up to now we only realized some basic services for
event handling, we postulate that an infrastructure for future populations of smart
things requires such services. Here again we think that an object-oriented virtual

 5

world that mirrors the physical world with respect to relevant events is well suited for
such services.

Beyond the concepts mentioned here and our current (and still rather initial) realiza-
tion of an infrastructure for smart things, there are other interesting challenges - both
on the conceptual level and on a more pragmatic implementation level. For example,
it is not a priori clear what a single object in the real world should be: Two objects
might be bound together (and have two RFID tags) such that they might also appear
as a single object - this is an example of a modeling issue one has to deal with. Dy-
namic creation and mobility of artifacts together with the geographic distribution of
the supporting infrastructure gives rise to a different set of problems and design is-
sues on the implementation level (e.g., should the virtual proxy of a mobile artifact
also be mobile and follow the artifact to another infrastructure domain?). Finally,
considering time as another dimension where local proximity matters yields even
more challenging issues.

However, as our case study described further down shows, even a rather small subset
of an ideal infrastructure for smart things is already very helpful.

The Role of Event-Based Systems
We consider events, and services associated with events, to be of prime importance
for an infrastructure for smart things. An event is a message that is generated by an
event source and sent to one or more event consumers. The arrival of an event at an
event consumer triggers some action in response to that event. Associated with an
event may be arbitrary data, called event arguments.

An event-based system is characterized by the set of possible events and the argu-
ment data domain. One can differentiate amongst untyped and typed event spaces.
For example, an untyped approach is used in the Jini system [19] in order to guaran-
tee interoperability, while the CORBA event service [17] supports both typed and
untyped spaces.

Usually, a fixed set of basic events is identified. These events are directly or indi-
rectly generated by some sensory hardware (e.g, the appearance of an RFID tag, as in
our case study example). However, the most interesting events are aggregations of
one or more basic (or other aggregated) events. Such “combined” events are often
called context events. Since they play such an important role, event-based systems
have to provide a means to describe context events by providing direct access to ba-
sic events and operations for the description of aggregated events. Examples are the
event translation language contained in the Xt programming toolkit [18] and the sim-
ple language for describing weather conditions within the Tacoma weather alarm sys-
tem [16].

In an infrastructure for ubiquitous computing environments, several features for de-
scribing events could be helpful. This includes multi-level context events (where
context events are part of the description of other events), event sequences, access to
event arguments, and extensions of the event space. Furthermore, continuous context
information such as time or geographic location could be incorporated within event
descriptions.

 6

An important issue in an event-based system is the mode of addressing event con-
sumers. There is a wide variety of possibilities to choose from and it is largely de-
pendant on the kind of applications which modes should be supported. For example,
within the X11 windowing system, a hierarchical distribution scheme is used, while
in the Jini system event consumers can register for arbitrary events. Adequate
mechanisms for large populations of smart things have yet to be identified, but prox-
imity-based and type specific addressing schemes seem to be useful.

Difficulties arise with the remote distribution of events, in particular in dynamic con-
texts and wireless environments that are typical for populations of smart things. Gen-
erally, in-order delivery is very costly and is justified only by certain applications. In
particular, the event distribution mechanism has to deal with partial network failures
or temporarily unavailable event consumers. It is therefore desirable that event con-
sumers can specify how events destined for them are handled.

RFID CHEF – A CASE STUDY
In order to examine some of the issues described above, we designed and imple-
mented a scalable case study, called RFID Chef. Though our primary focus is on
gaining experimental insights by providing an easily accessible scenario, we also
tried to position the project as being part of a realistic environment in the not too dis-
tant future.

RFID Chef is situated in the ordinary household kitchen, where it attempts to facili-
tate and improve the everyday tasks of supply keeping and cooking. We anticipate
the kitchen environment to be a fertile exploration setting for the following reasons:

• Non-technical environment: In contrast to classical office environments
where people have long since accepted the presence of technology, a kitchen
is a social space where so far manual labor has played a dominant role. In or-
der to be accepted, technology needs to be combined with tangible interfaces
[7] such as knives, pots and pans, or counter tops.

• Variety of artifacts: A kitchen offers a large diversity in artifacts, both in the
real world (e.g., ingredients, cooking utensils, appliances, and last not least,

Figure 4: Sample screenshot of the RFID Chef prototype implementation. On the left
side, three ingredients have been placed on the counter: tomatoes, green onions and po-
tatoes. The system suggests a Chinese tomato stew. After the potatoes have been re-
moved and five additional ingredients have been put on the counter, the recipe list dy-
namically adapted to suggest Spaghetti Spinachi instead.

 7

people) and as purely virtual entities (such as recipes).

• Large number of artifacts: Each type of artifact described above comes in
relatively large number of individual items, such as different spices, various
sized pots & pans, the individual members of a family, or even different
guests.

• High interaction complexity: People use a number of ingredients in order to
prepare a particular recipe, employing different tools and appliances in the
process.

In short, a kitchen should offer the complexity of interaction patterns that we are in-
terested in, while at the same time being a challenging environment for incorporating
technology into everyday objects. For similar reasons, Minar et. al. started work on a
project called Counter Intelligence [12].

In the following paragraphs, we will first describe the current state of our prototype
system, and then continue with a description of its underlying software architecture.
A brief overview on the utilized hardware and software concludes the description of
our case study.

Prototype Description
In our first implementation step, we have targeted the kitchen counter and extended it
in order to support the user in selecting a recipe given the list of ingredients at hand.

The basic interaction pattern is as follows: The user places grocery items (equipped
with RFID tags) such as cheese or tomatos onto the kitchen counter. Items can be
placed individually or in groups, e.g., in a shopping bag. An LCD screen next to the
counter dynamically displays the current list of ingredients placed on the counter and
updates a recipe list in order to
show dishes that can be prepared
with the ingredients present. A
picture of the setup in our lab is
shown in figure 5, a more de-
tailed screenshot of the display
can be seen in figure 4.

Red and green bars act as visual
aids to the user in order to show
how “close” a number of certain
ingredients are to the list of re-
quired ingredients for a recipe.
Red bars indicate that the recipe
requires further ingredients not
yet placed on the counter. The
larger the filling of the red bar,
the closer the recipe is to the
available ingredients. Once all
required ingredients for a recipe
are available, its bar turns to
green and its semantics change

Figure 5: Experimental setup of RFID Chef in our
lab. A standard office desk functions as our kitchen
counter, an 18” LCD monitor acts as our display.
Several individual ingredients have been placed on
the table, where an RFID antenna (here shown in
its casing, next to the ingredients) detects them and
reports their presence to a PC that controls the dis-
play. Note that the antenna is usually mounted un-
derneath the table.

 8

from “how many ingredients are
missing” to “how many ingredients
are not needed for this recipe.” A
perfect match of ingredients is thus
shown as a full green bar (compare
with the top entries in the pictures in
figure 4). If, however, one or more
of the available ingredients are not
needed for a recipe, the green bar is
shortened proportionally.

Recipes are ordered according to the
color of their bar (green bars sorted
first, followed by red bars) and the
size of the bar (closer matches first).
Using the mouse as a pointing de-
vice, a user can click on an interest-
ing recipe and call up the recipe
homepage for detailed cooking in-
structions.

Software Architecture Design
The main task of the RFID Chef software infrastructure is to provide a model for
supporting the large variety of interaction styles mentioned in the first section of this
paper. Both the flexibility as well as the efficiency of the system should be as high as
possible. To that extent, we have implemented a layered event architecture that feeds
sensory data into higher-level event structures, which can then be exploited by a sim-
ple script.

Being in its initial stages, it represents only a fraction of an ideal infrastructure as
discussed in the previous sections. However, it should serve as a good sample envi-
ronment for validating some of our infrastructure assumptions.

At the lowest level of the RFID Chef system, the Sensory Control- and Input-
Processing Module polls sensors continuously. In the current prototype, only a single
sensor exists – the RFID reader. The same module is also responsible for sensory
hardware configuration and control, which can in turn be affected by higher-level
context events. The module outputs the status of the RFID reader, including any
RFID tags encountered in the vicinity (i.e., their ID’s), at discrete time intervals to the
Basic Event Modeling Module layered on top.

The Basic Event Modeling Module is responsible for creating basic events that can be
computed directly from sensor input, such as the appearance of an artifact inside the
sensor range. For that purpose, the module keeps a short-term record of identified
tags and compares the list of currently detected tags with those detected in the previ-
ous time interval. Should the two sets differ, corresponding appearance events and
disappearance events are triggered and propagated to the Context Event Modeling
Module.

Context event modeling

Basic event modeling

Sensory control and input processing

Sensory hardware

Figure 6: Layerd event-based architecture. Af-
ter processing sensor input from the hardware,
basic events are created and passed to the con-
text event level, where events are held back,
aggregated or released depending on context
information.

Virtual counterparts

 9

The Context Event Modeling Module processes basic events and filters or collates
them. In our current implementation, the module is also used for sensor dampening:
it collates several basic events over time and releases them grouped at a higher granu-
larity. This way, the display avoids the problem of sensor jitter, where the addition of
several ingredients to the counter would result in the repeated flickering on the screen
as the recipe list would be reordered for each additional ingredient. With sensor
dampening, only a single event is triggered after the ingredients list has stabilized
again, resulting in only a single update of the screen. Similarly, events that signal the
disappearance of an ingredient are held back for a short amount of time in the con-
text module, in order to wait for an appearance-event of the same ingredient a short
time later. Often the rearrangement of ingredients on the counter will result in brief
periods of time where the reader cannot detect a certain tag (mainly due to the colli-
sion avoidance algorithm of the underlying RFID tag identification system). By with-
holding a disappearance event for only a short time, the context module avoids un-
necessary updates of the recipe list.

Implementation Status
In our initial prototype of RFID Chef, we did not focus on proper, unobtrusive inte-
gration with a regular kitchen environment. As our primary goal is to study and iden-
tify software infrastructure issues, our prototype relies more on the imagination of the
user in order to pass as a productive kitchen environment.

Hardware Setup
The first generation of RFID Chef
consists of an RFID reader that is
connected using a serial cable to a
standard PC. The RFID reader’s
antenna is mounted underneath a
table. The output device is an 18”
LCD monitor, a mouse allows for
navigation of the recipe display.
Figure 7 depicts our hardware
setup.

In an initial registration step, each
individual ingredient is tagged us-
ing a unique RFID label. In all
cases, such a label is placed in the
position where the product’s bar-
code is currently located, simulating a future stage of packaging where barcode labels
are shipped with RFID tags underneath. Fruits and vegetables are assumed to either
come prepackaged or are packaged, weighted, and labeled (using a self-adhesive
printed barcode label), which is usually done by either the consumer or the salesper-
son in the store. In both cases the items thus feature a barcode label (or, in our case,
an RFID label).

The RFID infrastructure is based on Philip’s I-Code tag system [15], which offers 64
bits of read-only memory as well as 384 bits of user-definable read-write memory per

Figure 7: Schematic view of the RFID Chef
hardware. The RFID reader antenna detects
tagged artifacts in its vicinity and transmits raw
sensory information through a reader module to
the PC via serial cable.

24V DC

Standard PC
with Display

RFID Antenna RFID Tags

RFID Reader

Serial Cable

 10

tag. Tags come in two form factors: as a 80x50mm self-adhesive label, and as a rec-
tangular, 55x55mm plastic wafer (shown in figure 8). The I-Code reader device oper-
ates at a frequency of 13.56 MHz and is able to read or write up to 30 tags at once
using a (proprietary) anticollision protocol. The reader field easily penetrates the
(non-metallic) table and is able to read and write tags within a 1x1m area on the ta-
ble.

Software Status
The software is currently implemented partially in C (sensor library), Java (event li-
brary) and Python (application scripting).

The Python script features a small database of recipes, including a detailed, search-
able list of ingredients. The script registers its interest in changes in the set of ingre-
dients (including a resolution time in seconds) and reacts to any state change with the
display of an updated recipe list (expressed as an HTML page). If the user clicks on
any recipe displayed in the list, the script displays the recipe details and sends a con-
text event to the Context Event Modeling Module, informing it about the mode
change. Once the user switches back to the list of recipes, a corresponding context
event signals the return to the recipe list mode to the context module.

The recipe database currently con-
tains about 50 recipes, which were
assembled from various Internet
sources by manually extracting their
list of ingredients and entering them
into our database. The system is op-
erational and has already been used in
various public demonstrations.

RELATED WORK
The use of RFID tags as an enabling
technology for ubiquitous computing
has already been explored in some
other research projects. For example,
Barrett et al. report creating “virtual
floppies” – small disk-like objects
that can be associated with files and folders on a computer [1]. Want et al. describe a
number of scenarios where RFID tags call up additional information on-screen (such
as displaying a person’s homepage when holding his or her business card in front of
the computer), or trigger automated translation scripts [2]. Minar et al. similarly use
RFID tags to create a jukebox, where poker chips dropped on a table trigger playing
of an associated song [3]. The coupling of real and virtual objects is also considered
by Ljungstrand et al. [20] in their WebStickers project where they use barcode labels
(instead of RFID tags) to associate a Web page with a physical object. As pointed ou t
in the introduction, most of these projects only investigate novel ways of interactions,
rather than addressing requirements for a large-scale deployment of such tags.

Related to our system is also the Cooltown project [5], where a Web page is attrib-
uted not only to people and places, but also to arbitrary things. The project focuses on

Figure 8: The two different form factors of
I-Code RFID labels that are used in our
RFID Chef testbed environment.

 11

an infrastructure for the Web presence of things, which encompasses device discov-
ery, location awareness, nomadicity support, and general service access. The Cool-
town project is largely based on the established Web infrastructure (e.g., URLs, http,
Web servers, Web pages) in contrast to our system, which advocates a more general
event-based and object-oriented representation of the virtual counterparts of real
things. The Portolano project at the University of Washington [13] also plans to in-
vestigate “architectures for proxies to handle computationally limited, mobile de-
vices” [14]. However, so far no results have been published.

The Counter Intelligence project [8,12] of the Things That Think (TTT) Consortium
[11] at the MIT Media Lab comes closest to our work, in particular with respect to
the kitchen environment scenario. The system lets the user manually choose a recipe
and then offers step-by-step instructions as it observes the user during preparation.
While we have so far largely ignored user interface issues in our scenario and instead
focused more on infrastructure and architectural, large-scale design, much of the
work in Counter Intelligence has centered on the interaction of the user with the sys-
tem, such as the suitability of voice output for the recipe preparation instructions.

An infrastructure called Hive [3, 9] forms the basis for each of the TTT prototypes.
Hive has its origins in a distributed agent system created for distributed Internet ap-
plications [10] and thus focuses more on the distribution of a particular application
between several mobile agents. Our approach, on the other hand, tries to provide an
efficient virtual representation for representing real-world interactions. Also, while
we view events and event-hierarchies as an essential building block for effective in-
teraction modeling, Hive uses agent-based messaging.

FUTURE WORK
Our initial RFID prototype has been a first step. Clearly, we now face the task of ex-
tending our system to support more complex scenarios and then gradually refine its
underlying infrastructure. With the introduction of personalized recipe selections, we
will need to introduce multiple types of artifacts. Following recipe selection, an inter-
active preparation mode would need more complex event support, both in terms of
inter-artifact interaction and time-based event handling. Lastly, extending the system
towards other tasks in the kitchen such as coffee brewing or reading the newspaper
would require us to fully address the requirements of a virtual proxy architecture in-
cluding mapping and mobility. The ultimate goal of the prototype is to gain experi-
ence with experimental infrastructure components for populations of cooperating
smart things and to learn about the general requirements of such an infrastructure.

CONCLUSIONS
In the attempt to transform real-world artifacts into smart things that provide easier
access to information, facilitate tasks, and interact with other smart things, RFID tag
technology presents a valuable alternative to embedding full-featured computing de-
vices. However, in order to scale beyond trivial sample applications, a more sophisti-
cated approach is needed both in terms of object representation and interaction mod-
eling.

In our paper, we outlined the approach taken by our group, where we envision treat-
ing both active computing devices and tagged artifacts as first class objects having a

 12

corresponding virtual counterpart in a networked computing environment. Such
counterparts would not only serve as a data repository for fixed and variable informa-
tion about an object, but would also facilitate active interaction between various arti-
facts that would otherwise be limited to short-lived request-response cycles, always
cut short by the limited time a tagged object remains within the reading range of an
RFID reader.

As a first step we have begun implementing a hierarchical event infrastructure, which
supports these virtual objects by providing an efficient framework for abstraction
between the real world and its virtual representation. Raw sensory input is clustered
into basic events, which in turn can be the basis for complex and self-referring con-
text events. Both multi-event triggers as well as triggers over time will form the
foundation for helping the virtual representation keeping track of relevant events in
the real world.

REFERENCES
1. Barrett, E., and Maglio, P.: Informative Things: How to Attach Information to

the Real World. In Proceedings of UIST ’98, pp. 81-88.

2. Want, R., Fishkin, K., Gujar, A. and Harrison, B.: Bridging Physical and Virtual
Worlds with Electronic Tags. In Proceedings of CHI ’99 (Pittsburgh PA, May
1999), ACM Press, pp. 370-377.

3. Minar, N., Gray, M., Roup, O., Krikorian, E., and Maes, P.: Hive: Distributed
Agents for Networking Things. In Proceedings of ASA/MA ’99 (Palm Springs
CA, August 1999), IEEE Press, pp. 118-129.

4. Weiser, M.: The Computer for the Twenty-First Century. Scientific American,
September 1991, pp. 94-101.

5. Kindberg, T. et al.: People, Places and Things: Web Presence for the Real
World. HP Laboratories Technical Report HPL-2000-16.

6. Finkenzeller, K., and Waddington, R.: RFID Handbook: Radio-Frequency Iden-
tification Fundamentals and Applications. John Wiley & Sons, October 1999.

7. Ishii, H., and Ullmer, B. Tangible Bits: Towards Seamless Interfaces between
People, Bits and Atoms. In Proceedings of CHI ’97 (Atlanta GA, March 1997),
ACM Press, pp. 234-241.

8. Kaye, J., Marsakis, N., Gray, M., Wheeler, A., and Hawley, M.: PC Dinners, Mr.
Java and Counter Intelligence: Prototyping Smart Appliances for the Kitchen.
Accessible online at
http://www.media.mit.edu/~jofish/ieee.paper/ieee.cga.jofish.htm

9. Roup, O.: Hive: A Software Infrastructure for Things That Think. Master’s The-
sis, MIT Media Lab, May 1999.

10. Minar, N.: Designing an Ecology of Distributed Agents. Master’s Thesis, MIT
Media Lab, September 1998.

11. Things That Think Consortium homepage at
http://www.media.mit.edu/ttt/

12. Counter Intelligence Project homepage at http://www.media.mit.edu/ci/

 13

13. Portolano Project homepage at
http://www.cs.wasington.edu/research/portolano/

14. Esler, M., Hightower, J., Anderson, T., and Borriello, G. Next Century Chal-
lenges: Data-Centric Networking for Invisible Computing, in Proceedings of
Mobicom ’99 (Seattle WA, August 1999).

15. The Philips I-Code System homepage in /identification/products/icode/
at http://www-us2.semiconductors.philips.com

16. Jacobsen, K., and Johansen, D.: Ubiquitous Devices United: Enabling Distrib-
uted Computing Through Mobile Code. In Proceedings of the Symposium on
Applied Computing (ACMSAC’99), February 1999.

17. Object Management Group. CORBA Services: Common Object Services Speci-
fication. 1998. Available at
ftp://www.omg.org/pub/docs/formal/98-12-09.pdf

18. Nye, A., and O’Reilly, T.: X Toolkit Intrinsics Programming Manual. O’Reilly
& Associates, Inc, 1993.

19. Edwards, K.: Core Jini. Prentice Hall, 1999.

20. Ljungstrand, P., Redström, J., Holmquist, L.E.: WebStickers - Using Physical
Tokens to Access, Manage and Share Bookmarks to the Web. DARE 2000 (De-
signing Augmented Reality Environments) Elsinore, Denmark, April 12-14,
2000.

