
Studies in Systems, Decision and Control 273

Hiram Ponce
Lourdes Martínez-Villaseñor
Jorge Brieva
Ernesto Moya-Albor   Editors

Challenges 
and Trends in 
Multimodal 
Fall Detection 
for Healthcare



Studies in Systems, Decision and Control

Volume 273

Series Editor

Janusz Kacprzyk, Systems Research Institute, Polish Academy of Sciences,
Warsaw, Poland



The series “Studies in Systems, Decision and Control” (SSDC) covers both new
developments and advances, as well as the state of the art, in the various areas of
broadly perceived systems, decision making and control–quickly, up to date and
with a high quality. The intent is to cover the theory, applications, and perspectives
on the state of the art and future developments relevant to systems, decision
making, control, complex processes and related areas, as embedded in the fields of
engineering, computer science, physics, economics, social and life sciences, as well
as the paradigms and methodologies behind them. The series contains monographs,
textbooks, lecture notes and edited volumes in systems, decision making and
control spanning the areas of Cyber-Physical Systems, Autonomous Systems,
Sensor Networks, Control Systems, Energy Systems, Automotive Systems,
Biological Systems, Vehicular Networking and Connected Vehicles, Aerospace
Systems, Automation, Manufacturing, Smart Grids, Nonlinear Systems, Power
Systems, Robotics, Social Systems, Economic Systems and other. Of particular
value to both the contributors and the readership are the short publication timeframe
and the world-wide distribution and exposure which enable both a wide and rapid
dissemination of research output.

** Indexing: The books of this series are submitted to ISI, SCOPUS, DBLP,
Ulrichs, MathSciNet, Current Mathematical Publications, Mathematical Reviews,
Zentralblatt Math: MetaPress and Springerlink.

More information about this series at http://www.springer.com/series/13304

http://www.springer.com/series/13304


Hiram Ponce • Lourdes Martínez-Villaseñor •

Jorge Brieva • Ernesto Moya-Albor
Editors

Challenges and Trends
in Multimodal Fall Detection
for Healthcare

123



Editors
Hiram Ponce
Facultad de Ingeniería
Universidad Panamericana
Mexico City, Mexico

Lourdes Martínez-Villaseñor
Facultad de Ingeniería
Universidad Panamericana
Mexico City, Mexico

Jorge Brieva
Facultad de Ingeniería
Universidad Panamericana
Mexico City, Mexico

Ernesto Moya-Albor
Facultad de Ingeniería
Universidad Panamericana
Mexico City, Mexico

ISSN 2198-4182 ISSN 2198-4190 (electronic)
Studies in Systems, Decision and Control
ISBN 978-3-030-38747-1 ISBN 978-3-030-38748-8 (eBook)
https://doi.org/10.1007/978-3-030-38748-8

© Springer Nature Switzerland AG 2020
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, expressed or implied, with respect to the material contained
herein or for any errors or omissions that may have been made. The publisher remains neutral with regard
to jurisdictional claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-030-38748-8


Preface

This book presents challenging issues and current trends for designing human fall
detection and classification systems, as well as healthcare technologies, using
multimodal approaches. In healthcare, falls are frequent especially among elderly
people and it is considered a major health problem worldwide. Recently, fall
detection and classification systems have been proposed to address this problem,
and to reduce the time, a person fallen receives assistance. For a comprehensive
perspective of these healthcare technologies, the book is divided into two parts.

In the first part, human fall detection and classification systems are approached.
A holistic view, from the design process to the implementation, is considered in the
self-contained chapters presented. Moreover, these contributions mainly correspond
to the challenges, methodologies adopted and results of the international compe-
tition, namely Challenge UP—Multimodal Fall Detection that was held during the
International Joint Conference on Neural Networks (IJCNN) in 2019. Throughout
this part, many of the chapters include open coding. This gives readers and prac-
titioners the opportunity to be involved in the fall detection and classification
problem by hands-on experience. First, chapter “Open Source Implementation for
Fall Classification and Fall Detection Systems” presents a public multimodal
dataset for fall detection and classification systems, namely UP-Fall detection. This
dataset was part of the above-mentioned competition; thus, a concise tutorial on
how to manipulate and analyze it, as well as how to train classification models and
evaluate those using the dataset, for classification systems, is presented. In chapter
“Detecting Human Activities Based on a Multimodal Sensor Data Set Using a
Bidirectional Long Short-Term Memory Model: A Case Study,” authors propose a
deep learning model using bidirectional long short-term memory (Bi-LSTM) to
detect five different types of falls using a dataset provided by the Challenge UP
competition. The work corresponds to authors that won the third place. In contrast,
chapter “Intelligent Real-Time Multimodal Fall Detection in Fog Infrastructure
Using Ensemble Learning” presents a proposed methodology for conducting
human fall detection near real time by reducing the processing latency. This
approach considers distributing the fall detection chain over different levels
of computing: cloud, fog, edge and mist. In addition, chapter “Wearable Sensors
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Data-Fusion and Machine-Learning Method for Fall Detection and Activity
Recognition” presents a method for fall detection and classification using the
UP-Fall detection dataset. The authors present an interesting approach performing
unsupervised similarity search in order to find the most similar users to the ones in
test set, helping for parameter tuning. These authors won the first place in the
Challenge UP competition. In contrast to the above sensor-based approaches, in
chapter “Application of Convolutional Neural Networks for Fall Detection Using
Multiple Cameras,” authors present a fall detection system using a 2D convolu-
tional neural network (CNN) evaluating independent information of two monocular
cameras with different viewpoints, using the public UP-Fall detection dataset. The
results obtained show that the proposed approach detects human falls with high
accuracy, and it has comparable performance to a multimodal approach. Lastly,
chapter “Approaching Fall Classification Using the UP-Fall Detection Dataset:
Analysis and Results from an International Competition” presents the results of the
competition and the lessons learned during this experience. In addition, it discusses
trends and issues on human fall detection and classification systems.

On the other hand, the second part comprises a set of review and original
contributions in the field of multimodal healthcare. These works present trends on
ambient assisted living and health monitoring technologies considering the
user-centered approach.

Chapter “Classification of Daily Life Activities for Human Fall Detection:
A Systematic Review of the Techniques and Approaches” reviews the techniques
and approaches employed to device systems to detect unintentional falls. The
techniques are classified based on the approaches employed and the used sensors
and noninvasive vision-based devices. In chapter “An Interpretable Machine
Learning Model for Human Fall Detection Systems Using Hybrid Intelligent
Models,” authors propose a fall detection system based on intelligent techniques
using feature selection techniques and fuzzy neural networks. The authors highlight
the importance of feature selection techniques to improve the performance of hybrid
models. The main goal was to extract knowledge through fuzzy rules to assist in the
fall detection process. In chapter “Multi-sensor System, Gamification, and Artificial
Intelligence for Benefit Elderly People,” authors present a multi-sensory system into
a smart home environment and gamification to improve the quality life of elderly
people, i.e., avoiding social isolation and increasing physical activity. The proposal
comprises a vision camera and a voice device, and artificial intelligence is used in
the data fusion. Lastly, chapter “A Novel Approach for Human Fall Detection and
Fall Risk Assessment” proposes a noninvasive fall detection system based on the
height, velocity, statistical analysis, fall risk factors and position of the subject from
depth information through cameras. The system is then adaptable to the physical
conditions of the user.

We consider this book useful for anyone who is interested in developing human
fall detection and classification systems and related healthcare technologies using
multimodal approaches. Scientists, researchers, professionals and students will gain
understanding on the challenges and trends on the field. Moreover, this book is also
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attractive to any person interested in solving signal recognition, vision and machine
learning challenging problems given that the multimodal approach opens many
experimental possibilities in those fields.

Lastly, the editors want to thank Universidad Panamericana for all the support
given to this publication and the related research project that includes the organi-
zation of the international competition and the creation of the public dataset. The
editors also want to thank Editor Thomas Ditzinger (Springer) for his valuable
feedback and recognition to this work.

Mexico City, Mexico
November 2019

Hiram Ponce
Lourdes Martínez-Villaseñor

Jorge Brieva
Ernesto Moya-Albor
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Wearable Sensors Data-Fusion
and Machine-Learning Method for Fall
Detection and Activity Recognition

Hristijan Gjoreski, Simon Stankoski, Ivana Kiprijanovska,
Anastasija Nikolovska, Natasha Mladenovska, Marija Trajanoska,
Bojana Velichkovska, Martin Gjoreski, Mitja Luštrek and Matjaž Gams

Abstract Human falls are common source of injury among the elderly, because
often the elderly person is injured and cannot call for help. In the literature this is
addressed by various fall-detection systems, of which most common are the ones
that use wearable sensors. This paper describes the winning method developed for
the Challenge Up: Multimodal Fall Detection competition. It is a multi-sensor data-
fusion machine-learning method that recognizes human activities and falls using 5
wearable inertial sensors: accelerometers and gyroscopes. Themethodwas evaluated
on a dataset collected by 12 subjects of which 3 were used as a test-data for the
challenge. In order to optimally adapt the method to the 3 test subjects, we performed
an unsupervised similarity search—that finds the three most similar users to the three
users in the test data. This helped us to tune the method and its parameters to the 3
most similar users as the ones used for the test. The internal evaluation on the 9 users
showed that with this optimized configuration the method achieves 98% accuracy.
During the final evaluation for the challenge, our method achieved the highest results
(82.5% F1-score, and 98% accuracy) and won the competition.

Keywords Activity recognition · Fall detection · Accelerometers · Machine
learning · Wearable sensors
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1 Introduction

Human falls are critical health-related problems for the elderly [14], and the statis-
tics show that approximately 30% of people over the age of 65 fall each year, and
this proportion increases to 40% in those aged more than 70 (Gillespie et al. [10].
According to Worth Health Organization [32] about 20% of the elderly who fall
require medical attention. Furthermore, falls and the fear of falling are important
reasons for nursing-home admission [28]. Falls are particularly critical when the
elderly person is injured and cannot call for help. These reasons, combined with
the increasing accessibility and miniaturization of sensors and microprocessors, are
driving the development of fall-detection (FD) systems.

Fall detection has received significant attention in recent years, however it still
represents a challenging task [13]. The Challenge UP: Multimodal Fall Detection
competition1 presents a great opportunity the activity-recognition community to test
and compare their approaches. The goal of the challenge is to recognize, as accurately
as possible, 12 activities, including 5 falls.

This paper describes the method that we developed for the competition.2 It is
a multi-sensor data-fusion machine-learning method that recognizes human activ-
ities and falls using 5 accelerometers and 5 gyroscopes. It includes several steps:
data preprocessing, data segmentation, sensor orientation correction, feature extrac-
tion, feature selection, hyperparameter optimization, and training a machine learning
model.

The evaluation was performed on a dataset provided by the organizers of the
competition. It consists of wearable sensors data collected by 12 subjects of which
3 were used as a test data for the challenge. Our method was ranked first, achieving
highest recognition performance: 82.5% F1-score, and 98% accuracy.

The rest of the paper is organized as follows. The dataset is explained in Sect. 2,
whereas section three is dedicated to explaining the methodology of our system.
In the description of the methodology we discuss the preprocessing applied to our
data, the sensor orientation correction, as well as the feature extraction and feature
selection procedures. In Sect. 4 we focus on the evaluation methods for the pipeline,
and in Sect. 5 we conclude the paper.

2 Related Work

Activity recognition (AR) and fall detection (FD) approaches can be divided into
those that use wearable and non-wearable sensors, respectively. The most common

1The Challenge Up Multimodal Competition, available at: https://sites.google.com/up.edu.mx/
challenge-up-2019/overview.
2The code developed for the challenge is available at: https://github.com/challengeupwinner/
challengeupcode.

https://sites.google.com/up.edu.mx/challenge-up-2019/overview
https://github.com/challengeupwinner/challengeupcode
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non-wearable approach is based on cameras [34]. Video-based human activity recog-
nition is a hot research area in computer vision to help people with special needs.
Miguel et al. [23] developed a computer-vision based system to recognize abnormal
activity in daily life in a supportive home environment. The system tracked activity
of subjects and summarized frequent active regions to learn a model of normal activ-
ity. It detected falling events as abnormal activity, which is very important in-patient
monitoring systems. Although this approach is physically less intrusive for the user
compared to one based on wearable sensors, it suffers from problems such as target
occlusion, time-consuming processing and privacy concerns.

The most mature approach to both AR and FD is probably using wearable
accelerometers, [4, 15, 17, 27]. Themost common accelerometer-basedAR approach
uses machine learning. Typically, a sliding window passes over the stream of sensor
data, and data in each window are classified with one of the known classification
methods, such as decision trees (DTs) and support vector machines (SVM). The
most frequent AR task is classifying activities in relation to movement, e.g., walking,
running, standing still and cycling [17, 27].

An alternative approach to accelerometer-based AR is based on manually created
rules [20]. These rules are usually based on features that are calculated from sensor
orientations and accelerations. Bourbia et al. [4] presented an approach in which
decision rules are used to recognize activities. Another implementation of such rules
was presented by Lai et al. [21], who used six accelerometers, placed on the neck,
waist, both wrists and both thighs and reported accuracy of 99.5%.

Fall detection has also been addressed in related studies [22]. Some of the first
studies includeWilliams et al. [31] andDoughty et al. [7]. In this approaches the fall is
detected by detecting a change in body orientation from upright to lying immediately
after a large negative acceleration. Later, this algorithm was upgraded and fine-tuned
by Aziz et al. [2] and Putra et al. [24, 25].

Degen et al. [6] presented a fall detector worn on the wrist that incorporates a
multi-stage fall detection algorithm. The first condition is the detection of a high
velocity towards the ground. Next, an impact needs to be detected within 3 s. After
impact, the activity is observed for 60 s, and if at least 40 s of inactivity are recorded,
an alarm is activated. The results show no false alarms, but large percentage of
backwards and sideways falls were not detected.

The most common approaches to FD are rules that use thresholds applied to
accelerations and features derived from them. Ren et al. [26] proposed personalized
and adaptive thresholdmodel and showed that accuracy increases for 1–3%compared
to other threshold models. Wu et al. [33] developed a fall detection system based on a
single, triaxial, accelerometer, which results showed lower sensitivity and specificity
compared to multi-sensor approaches. Hardjianto et al. [18] used an accelerometer
on smartphone, with six variations of the placement of the device. The method used
for fall detection is threshold method applying only one parameter, the value of
resultant acceleration. It resulted in 98.1% of accuracy, 96.9% of sensitivity, and 100
specificity.

In recent years there are also approaches that use machine learning instead of
threshold-based algorithms for FD. Putra et al. [24, 25] proposed an event-triggered
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machine learning approach that aligns each fall stage so that the characteristic features
of the fall stages are more easily recognized. The F1-score reached by the chest-worn
sensor is 98% and 92% for the waist-worn sensor.

3 Dataset

The dataset provided for the competition includes 12 activities, performed by 12
subjects. The data from 9 of the subjects were released for training the models, the
data from the remaining 3 subjects were used for final evaluation of the competitors.
The subjects performed 7 simple human daily activities (walking, standing, sitting,
picking up an object, jumping, laying, on knees) and 5 types of falls (falling forward
using hands, falling forward using knees, falling backwards, falling sideward, falling
sitting in empty chair). The distribution of the data according to the activities is shown
in Fig. 1.

The dataset was recorded using multiple types of sensors, i.e. wearable sensors,
ambient sensors and vision devices. The wearable sensors were located in the left
wrist, under the neck, at right pocket of pants, at themiddle ofwaist (in the belt), and in
the left ankle. Each of these sensors contains 3-axis accelerometer, 3-axis gyroscope
and a sensor for ambient light. Also, one electroencephalograph, located at the fore-
head, was used for measuring the brainwave signals. The ambient sensors include
six infrared sensors placed above the floor of the room, and all of them reported
changes in interruption of the optical devices. Lastly, the dataset was enriched with
images from two cameras, which captured the subjects while doing the activities.
The sampling rate of the sensors used in the dataset is 20 Hz.

Fig. 1 The distribution of the data according to the activities
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4 Method

Themethod thatwedeveloped for this study is shown inFig. 2. It includes data prepro-
cessing (filters, data segmentation—slidingwindow), feature engineering and extrac-
tion, feature selection, and finally a classification model to recognize the activity.
Each of the steps are described in the following subsections.

4.1 Data Preprocessing

Signal segmentation is very important step in the activity recognition process. There-
fore, we segmented the sensor signals using a sliding window size of 0.5 s with a
0.25 s overlap. This way the model recognizes activity every 0.25 s. The window size
and the sliding factor are important in data processing and have to be tuned correctly
for the task at hand. Longer windows naturally contain more data and are expected to
enable greater classifying accuracy, especially for more complex activities. Shorter
windows, on the other hand, make it possible to detect activity changes faster. Con-
sidering the fact that we aim to achieve accurate fall detection and falls last shorter
than one second on average in this dataset, the window size had to be chosen so that
it is small enough in relation to average fall duration. The optimal window size in
our experiments was determined empirically.

Raw sensor data Data preprocessing
Orientation correction

Falling forward using 
hands 

Recognized 
Activity

Feature extraction

Feature selection
Classification

Model

Fig. 2 Activity recognition and fall detection pipeline
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Beside the raw sensor signals (x, y and z axis) we additionally extracted the
magnitude of the acceleration vector. It was calculated for the accelerometer, as well
as the gyroscope and is shown in (1).

m =
√
x2 + y2 + z2 (1)

4.2 Orientation Correction

After analyzing the data, we noted that the orientation of the sensors varies between
users, and evenmore between different trials. Therefore, we have developed amethod
that corrects the orientation of the sensors, i.e., it uses rotation matrices to correct
(rotate) the accelerometers data. The method corrects accelerometer axes orientation
by applying a rotation transformation to the device’s raw data [16]. To calculate the
angle between the actual acceleration (e.g. the Earth’s gravity (g) for static activities)
and some of the axis (e.g., x-axis) we used the formula shown in (2)—where the
values ax , ay and az represent the actual acceleration vector.

ϕx = arccos

⎛

⎝ ax√
a2x + a2y + a2z

⎞

⎠ (2)

The coordinate system is rotated using trigonometry and rotational matrices, in
such a way that it corrects the data. In order to do this, one should calculate the dif-
ference between the expected angle (ϕx ) and the rotated angle (ϕxr ). This difference
gives the angle by which the coordinate system should be rotated in order to correct
the orientation of the sensor. The rotation is performed by a rotation matrix, which
describes a rotation of a coordinate system with respect to another orientation. An
acceleration vector in the initial reference frame can be transformed into a vector in
a rotated frame by multiplication of the initial vector with the rotation matrix [9]. In
three dimensions, rotations are possible around the three principal axes (x, y and z).

To achieve this, we used the standing activity as a reference in order to compute
the current angle ϕxr . This kind of reference angles (orientation vectors) are defined
for all accelerometers (neck, wrist, belt, right pocket and ankle). As a reference angle
(ϕx ) we used the angle under which the sensors of our referent subject are placed.
The method then calculates the rotation angle for every other subject in the dataset
with respect to the referent subject. Once it is calculated, all raw accelerometer data
thereafter are multiplied by the rotation matrix to achieve the corrected orientation.
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4.3 Feature Extraction and Selection

In order to extract as much features as possible, we used the TSFRESH library. It
performs time series feature extraction and selection, which we exploited in gener-
ating approximately 12,000 features. In the next step we performed feature selection
in order to reduce the number of features and keep only the most relevant ones. We
focused on removing those features which did not contribute to the accuracy of our
model and/or increased the odds for overfitting [19].

In the first step, we discarded the features containing missing and Not-a-Number
(NaN) values, which resulted in leaving 7700 features. Then,we estimated themutual
information between each feature and the label (activity). We sorted the features in
descending order according to this value, as the higher the mutual information, the
higher the dependency of the label from the corresponding feature. In the next step,
we divided the features in groups of 100. We began with the first group of features,
where we calculated the Pearson correlation coefficient for every pair of features. If
the correlation between a pair exceeded a threshold of 0.8, out of the twowe removed
the feature with the lower mutual information. To the remaining features of the group
we appended the following group of 100 features. The process was repeated until all
the initial groups of 100 were iterated.

Finally, we selected the definite set of features using a wrapper feature selection
algorithm. Here, the first step was to utilize the best scoring feature in regard to the
value of its mutual information with the label and train a classification model to
estimate the macro F1-score. Then, in every following step, the next feature of the
uncorrelated features was added to the previously kept features. Once the feature
was added, the model was retrained and a new F1 score obtained. If, at each step,
the score decreased not more than 1%, the newly added feature was kept. Other-
wise, the feature was dismissed, making the feature list before and after said step
unchanged. This measure, repeated for all the remaining features, allowed us to take
into consideration everywearable sensor and at the same time prevented us fromover-
fitting our model. The final feature selection resulted in 152 relevant, uncorrelated,
class-defining features.

4.4 Classification

We compared three machine learning algorithms:Decision Tree, XGBoost, and Ran-
dom Forest. After thorough evaluation and comparison (see the results in Sect. 5.3),
we have chosen the best performing one, i.e., Random Forest. This algorithm showed
more robust performancewhen tested in different scenarios and different users. In the
following paragraphs each of the algorithms is described in relation to our activity
recognition task.

Decision Tree [29] is an algorithm that learns a model in a form of a tree structure.
In particular, it divides the dataset into smaller subsets while at the same time the
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decision tree is incrementally learned. The final result is a tree with decision nodes
with two or more branches, each representing values for the feature tested, and leaf
nodes which represent a decision on the activity. In our case, all of the features are
numeric (this means the same feature can be used multiple times), which resulted in
very large trees.

XGBoost [5] is efficient implementation of the gradient boosted trees algorithm.
It is a supervised learning algorithm, which predicts the activity by combining the
estimates of a set of simpler, weaker models—in our case decision trees models. It
uses a gradient descent algorithm to minimize the loss when adding new models.
This way, it minimizes an objective function that combines a convex loss function
and a penalty term for model complexity. The training proceeds iteratively, adding
new trees that predict the errors of prior trees that are then combined with previous
trees to make the final prediction of the activity.

Random Forest [11] is ensemble of decision tree classifiers. During training, the
Random Forest algorithm creates multiple decision trees each trained on a boot-
strapped sample of the original training data and searches only across a randomly
selected subset of the input variables to determine a split (for each node). For clas-
sification, each tree in the Random Forest predicts the activity, and the final output
of the classifier is determined by a majority vote of the trees. This way, the activity
that is predicted by most of the decision trees will be chosen as final.

4.5 Hyperparameter Optimization

In the final step, we performed a hyperparameter optimization for each of the 3
algorithms explained in the previous subsection. Hyperparameter optimization is a
process of finding a set of optimal hyperparameters for a learning algorithm, where
a hyperparameter is a parameter whose value is used to control the learning process.
Finally, this optimization finds a tuple of hyperparameters that yields an optimal
model which minimizes the error function (maximizes the accuracy) given a dataset.

There are different methods for optimizing hyperparameters: Grid Search; Ran-
dom Search, Bayesian optimization, Gradient-based optimization, etc. We chose
Random Search method as it is one of the most commonly used methods for hyper-
parameter optimization in time-series data and showed to be more robust compared
to the other techniques [3]. Random Search replaces the exhaustive enumeration
of all combinations by selecting them randomly. This can be simply applied to the
discrete setting, but also generalizes to continuous and mixed spaces. It usually
outperforms Grid search, especially when only a small number of hyperparameters
affects the final performance of the machine learning algorithm—which was the case
in our study. Additionally, Random search is more efficient compared to Grid search,
which spends too much time evaluating unpromising regions of the hyperparameter
search space because it has to evaluate every single combination in the grid. Random
search in contrast, does a better job of exploring the search space and therefore can
usually find a good combination of hyperparameters in far fewer iterations [3].
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The following hyperparameters were optimized:

• Decision Tree: Maximum number of levels in tree; Minimum number of samples
required to split a node; Minimum number of samples required at each leaf node;

• Random Forest: Number of trees in random forest; Number of features to consider
at every split; Maximum number of levels in tree; Minimum number of samples
required to split a node; Minimum number of samples required at each leaf node;

• XGBoost: The learning rate; Minimum child weight; Number of estimators; Min-
imum number of samples required to split a node; Minimum number of samples
required at each leaf node; Maximum depth.

5 Evaluation

5.1 Dataset Split

In order to optimally adapt the method to the 3 test users, we have performed an
unsupervised similarity search—that finds the three most similar users to the three
users in the test data. This helped us to tune the method and its parameters to the 3
most similar users as the ones used for the test.

Themethod uses each user’s data individually and performs aK-means clustering,
where K is the number of classes/activities, i.e., we used 6 (all the falls are similar and
therefore we grouped them). After performing the clustering, then we calculated the
centroid for each cluster, which resulted in 6 centroids per user. Then, we calculated
a distance matrix that contained the distances between the 6 clusters of the train user,
and the 6 centroids from the test user.We calculated this matrix for each pair of users,
i.e., we calculated 27 distance matrices (the 9 users in train vs the 3 users in test).
For each matrix we have calculated the distance between the pair of users, i.e., we
calculated the minimum sum of the distances that covers all the 6 clusters. This way
we were able to find the 3 most similar (minimal distance) users to the ones used for
the test.

The most similar subjects to the test users: 15, 16 and 17, are: 4, 3 and 13
respectively.

5.2 Evaluation Metrics

Accuracy is the most commonly used metric that can be calculated from a confusion
matrix. Its main drawback is that it hides information on the specific nature of errors
(the proportions of FP and FN) [30]. It is calculated as following:



90 H. Gjoreski et al.

0.986 0.987 0.976 0.92 0.9 0.88 
0.77 

0.56 
0.68 

0

0.2

0.4

0.6

0.8

1

Subject 3 Subject 4 Subject 13
Random Forest XGBoost Decision Tree

Fig. 3 Accuracy comparison

Accuracy = True Posi tive + True Negative

True Posi tive + True Negative + False Posi tive + False Negative
(3)

We assessed the performance of themodel by not only using the accuracy, but also
macro F1-score (F1-macro). The F1-macro is the unweighted mean of the F1-scores
for the different labels [1]. It can be calculated as harmonic mean between precision
and recall, where the average is calculated per label and then averaged across all
labels. If Pi and Ri are the precision and recall for each label, then the F1-macro is
calculated as in (4):

F1-macro = 1

Q

Q∑

i=1

2 ∗ Pi ∗ Ri

Pi + Ri
(4)

5.3 Algorithm Comparison

A summary of the results is shown in Figs. 3 and 4, which shows that the system
successfully recognized the activities using optimized Random Forest classifier, with
high accuracy (97–99%), and F1 macro score (84–90%). The results using other
classifiers are significantly worse.

5.4 Confusion Matrices

The following 4 confusion matrices show the performance achieved for the 3 users
summarized (Table 2), and each of the users individually (Tables 3, 4 and 5). The
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Fig. 4 Comparison macro F1-score

Table 1 Activities and their
corresponding IDs

Activity ID Description

1 Falling forward using hands

2 Falling forward using knees

3 Falling backwards

4 Falling sideward

5 Falling sitting in empty chair

6 Walking

7 Standing

8 Sitting

9 Picking up an object

10 Jumping

11 Laying

12 On knees

IDs of the activities correspond to Table 1. Note that in the training data the on knees
activity is missing and therefore it is omitted in the results.

The results show that activities 6, 7, 8, 9, 10, 11 (walking, standing, sitting, picking
up an object, jumping and lying) are correctly recognized most of the time. Some
problem occurs with falling activities, but most likely this is due to the small number
of instances and the impossibility of the model to be enough trained on them.

5.5 Challenge UP Competition Final Results

The confusion matrix obtained by the final evaluation during the competition is
presented in Table 6. The overall results show that our method achieved 82.5% F1-
macro, and 98% accuracy. Although the resultingmatrix looks generally satisfying, it
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Table 2 Confusion matrix for the 3 users (Subject 3, Subject 4, Subject 13)

Activity 1 2 3 4 5 6 7 8 9 10 11
1 23 1 1 1 0 2 3 0 1 0 0
2 1 23 1 3 0 3 0 0 1 1 1
3 0 1 33 3 3 1 2 0 0 1 3
4 0 0 4 42 0 0 3 0 0 0 1
5 2 0 3 3 27 0 2 0 0 0 0
6 0 0 0 0 0 1909 3 0 7 0 0
7 0 0 0 1 0 34 2357 0 3 2 0
8 0 0 0 0 0 0 0 1902 4 0 29
9 0 0 0 0 2 0 1 0 56 0 3
10 1 0 0 0 0 8 7 0 0 943 0
11 0 0 0 2 1 0 0 0 0 0 1021

Table 3 Confusion matrix for User 3

Ac vity 1 2 3 4 5 6 7 8 9 10 11
1 9 0 0 0 0 0 2 0 1 0 0
2 1 14 0 2 0 2 0 0 0 1 1
3 0 0 15 0 0 1 2 0 0 0 3
4 0 0 0 15 0 0 3 0 0 0 1
5 0 0 3 0 20 0 0 0 0 0 0
6 0 0 0 0 0 657 0 0 0 0 0
7 0 0 0 1 0 7 759 0 0 2 0
8 0 0 0 0 0 0 0 642 4 0 0
9 0 0 0 0 0 0 0 0 23 0 0
10 0 0 0 0 0 2 4 0 0 309 0
11 0 0 0 2 1 0 0 0 0 0 1021

is noticeable that the biggest issue is the second activity—falling forward using knees.
Almost half of the instances that belong to this activity are classified as standing
by our model. We speculate that the reason for this is the lack of instances which
represent this activity. Another issue is the imperfection of data labeling. The activity
falling forward using knees consists of two parts: first standing and then kneeling.
It is possible that much of the standing may be labeled as falling due to too little
available time.

The rest of the activities are recognized with much higher accuracy. The activities
jumping and sitting are recognizedwith 100%,which is due to the dissimilarity to any
other activity. The other three activities recognized with 100% are: standing, falling
backwards and falling sideward, probably because of the orientation correction pro-
cedure. We speculate that due to the orientation correction our model was able to
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Table 4 Confusion matrix for User 4

Ac vity 1 2 3 4 5 6 7 8 9 10 11
1 6 0 0 0 0 1 1 0 0 0 0
2 0 4 0 1 0 0 0 0 1 0 0
3 0 0 9 0 2 0 0 0 0 1 0
4 0 0 0 8 0 0 0 0 0 0 0
5 2 0 0 2 4 0 2 0 0 0 0
6 0 0 0 0 0 645 0 0 7 0 0
7 0 0 0 0 0 6 772 0 3 0 0
8 0 0 0 0 0 0 0 640 0 0 0
9 0 0 0 0 1 0 0 0 23 0 0
10 1 0 0 0 0 2 1 0 0 330 0
11 0 1 0 2 0 0 0 0 1 7 1037

Table 5 Confusion matrix for User 13

Ac vity 1 2 3 4 5 6 7 8 9 10 11
1 8 1 1 1 0 1 0 0 0 0 0
2 0 5 1 0 0 1 0 0 0 0 0
3 0 1 9 3 1 0 0 0 0 0 0
4 0 0 4 19 0 0 0 0 0 0 0
5 0 0 0 1 3 0 0 0 0 0 0
6 0 0 0 0 0 607 3 0 0 0 0
7 0 0 0 0 0 21 826 0 0 0 0
8 0 0 0 0 0 0 0 620 0 0 29
9 0 0 0 0 1 0 1 0 10 0 3
10 0 0 0 0 0 4 2 0 0 304 0
11 1 1 0 1 0 0 0 0 0 0 971

successfully distinguish different falls based on the correct acceleration direction.
The final activity in knees was poorly recognized, probably due to the short duration
(few seconds) and the lack of this activity in the training data.

6 Conclusion

The paper presented the winning ML method of the Challenge Up: Multimodal Fall
Detection competition. Themethod is tuned for robustness and real-timeperformance
by combining multiple wearable inertial sensors: accelerometer and gyroscope, in
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Table 6 Confusion matrix—challenge up: multimodal fall detection final results

order to recognize activities and detect falls. It includes several steps: data prepro-
cessing, data segmentation, sensor orientation correction, feature extraction, feature
selection, hyperparameter optimization, and training a machine learning model.

During the development of the method we have noted that the orientation of the
sensors varies between users, and even more between different trials. Therefore, we
have developed a method that corrects the orientation of the sensors, i.e., it uses
rotation matrices to correct (rotate) the accelerometers data.

We applied extensive feature extraction and selection procedure. It is a three-step
procedure that selects an optimal subset of features (152 features) from the 12,000
features initially calculated from the raw sensor data.

Finally, to optimally adapt the method to the 3 test users, we have performed an
unsupervised similarity search—that finds the three most similar users to the three
users in the test data. This helped us to tune the method and its parameters to the 3
most similar users as the ones used for the test.

The internal evaluation on the 9 users showed that with this optimized config-
uration the method achieves 98% accuracy. All these steps allowed us to develop
accurate fall detection and activity recognition algorithm, that achieved the highest
results (82.5% F1-score, and 98% accuracy) at the competition and received the first
award.

The method has several limitations. First, it uses 5 wearable sensors, which is
impractical for everyday usage by an elderly person. For the future work, we plan
to focus more on the practical implementation of the method into a commercial fall
detection system. First, we intend to reduce the number of sensors but without losing
accuracy. This way the system will be less intrusive and more user-friendly. Another
improvement in this direction can be achieved by introducing specially designed



Wearable Sensors Data-Fusion and Machine-Learning… 95

clothes, which will include pockets for the sensors. Additionally, the interaction
between the user and the system should be introduced by using smartphone, smart-
watch, tablet or PC as a medium for showing system’s notifications (fall detected,
system malfunction, etc.), similar to Gjoreski et al. [12].
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