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ABSTRACT
Today’s sensor-rich mobile and wearable devices allow us to
seamlessly capture an increasing amount of our daily expe-
riences in digital format. This process can support human
memory by producing “memory cues”, e.g., an image or a
sound that can help trigger our memories of a past event. How-
ever, first-person captures such as those coming from wearable
cameras are not always ideal for triggering remembrance. One
interesting option is thus to combine our own capture streams
with those coming from co-located peers, in or even infras-
tructure sensors (e.g., a surveillance camera) in order to create
more powerful memory cues. Given the significant privacy
and security concerns of a system that shares personal experi-
ence streams with co-located peers, we developed a tangible
user interface (TUI) that allows users to in-situ control the
capture and sharing of their experience streams through a set
of five physical gestures. We report on the design of the de-
vice, as well as the results of a user study with 20 participants
that evaluated its usability and efficiency in the context of a
meeting capture. Our results show that our TUI outperforms
a comparable smartphone application, but also uncovers user
concerns regarding the need for additional control devices.

ACM Classification Keywords
H.5.m. Information Interfaces and Presentation (e.g. HCI):
Miscellaneous

Author Keywords
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INTRODUCTION
Emerging pervasive computing has made capturing of our
mundane experiences straightforward, a practice also known
as “lifelogging”. Such captured data streams cannot only be
used for quantifying our daily routines with the aim of improv-
ing our lifestyle (e.g., counting steps, tracking calorie burnout,
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Figure 1. Overview of the developed MemStone prototype that allows
users to in-situ control the capture and sharing of personal memories
through a set of five physical gestures. MemStone’s front side (a) fea-
tures a central screen and two LEDs that describe in detail its active
operation. MemStone has a different colored back side (b) that allows
users to see its position even from distance and denote its action.

monitoring sleep patterns, etc.) [4, 29], but can also support
human memory [21]. Prior research has investigated how au-
tomated capture technologies coupled with data analytics can
help us to create “memory cues”, a piece of information (e.g.,
a photograph, a sound, a set of words) that, when reviewed,
can trigger recall of previous experiences [13]. Davies et al.
define such “pervasive memory augmentation” as a three-step
process [10]: captured experience data (step 1) is processed
in order to carefully select a set of memory cues (step 2),
which are then presented back to users through ambient dis-
plays (step 3). Ultimately, the casual review of those cues will
allow users to improve their overall recall of the associated
experience without the help of any tool.

In previous work, we built an architecture that not only cap-
tures user experiences but also seamlessly and automatically
shares them with other co-located users [5]. Our approach
primarily focuses on visual logs (photographs and videos), as
prior studies identified these to offer the most powerful mem-
ory cues [13]. For capturing such logs, we rely on wearable
cameras (such as Microsoft SenseCam [19], Narrative Clip, or
the recently announced Google Clips), as well as infrastructure
cameras. The main driver behind such automatic sharing of
memories stems from the low-quality of memory cues cap-
tured from body-worn devices [9]: often camera lenses are
obscured by hair or clothes; their first-person perspective may
fail to capture important details; or they may simply point to
the wrong direction. Combining self-captured data with both
image streams from infrastructure cameras (their high vantage
point allows them to capture comprehensive scenes) and im-
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ages captured from the wearable cameras of other co-located
peers (capturing the same experience from different angles)
can significantly improve the quality of captured memory cues.

Obviously, a system that enables the seamless sharing of cap-
tured experiences introduces significant security and privacy
implications [10, 38]. Chief among are the challenges of (C1)
unintended access to captured memories and (C2) unintended
sharing of sensitive data. While an experience is captured,
the produced memories should only be shared with peers that
are co-present and engaged with the user. Moreover, while
an experience is being captured, there may be moments that
users would not want the system to record (e.g., discussing
confidential matters in a meeting), or situations that could be
captured but which should not be shared with others (e.g.,
users working in front of their computers). In other situations,
a user may be willing to share data with a particular set of
users but would want to limit adding further peers. Users
should thus be able to control and express their capture and
sharing preferences of the event they are experiencing, as the
event moves across different levels of sensitivity and privacy.
In case that one forgets to react in time, it should be possible
for one to perform after-the-fact deletion of such data, as soon
as it is noticed. Furthermore, access should be revoked if the
‘problematic’ data was shared with others.

In our previous work on the architecture for seamless and
secure memory sharing [5], we addressed threat C1 above, i.e.,
preventing passers-by from unintentionally receiving shared
experience streams. In this work, our aim is to address threat
C2, i.e., to investigate the use of in-situ controls for capturing
and sharing captured experiences. To this end we developed
MemStone (see Figure 1), a prototype of a tangible user inter-
face (TUI) that allows users to control access to (and sharing
of) captured memories in-situ. We conducted a user study with
20 participants with the goal of investigating the suitability of
a set of gestures to control data capturing and sharing, as well
as comparing the usability and efficiency of such interactions
with more “traditional” mobile app UI. The study also included
an open-ended discussion session to better understand users’
perceptions of such tangible interface. This paper describes
MemStone’s design and functionality, reports on the results of
the user study, and concludes with discussing the implications
of our results and outlining directions of future research.

RELATED WORK
Our work intersects three principal research strands: privacy is-
sues with visual lifelogs, techniques for enhancing privacy of
such data, and gesture-based interactions.

Privacy Issues with Visual Lifelogs
Visual lifelogs can be the basis for highly effective memory
cues. Thanks to body-worn cameras, which allow us to seam-
lessly capture continuous logs of our daily experiences, visual
lifelogging lays at the sweet spot between memory recall and
ease of capture. However, previous studies have found that
such unobtrusive capture can infringe both user and bystander
privacy. Clinch et al. [8] have conducted a multi-day experi-
ment where they provided all their participants with a wearable
camera which continuously captured users’ working activities.

Even though they instructed their participants not to record
on private spaces (i.e., bathrooms) and placed large “do-not-
capture” signs at the entrance of such private spaces, very
often users were forgetting to stop capturing in these areas.
They also found that such cameras repeatedly captured partici-
pants’ computer screens and phones. As a consequence, they
observed that such capture of private spaces as well as the pres-
ence of specific objects in images made users concerned about
their privacy. Similar privacy concerns with images showing
specific objects or taken at particular locations, but also por-
traying other known people, bystanders or user activities, have
also been observed by other studies [16, 24, 27]. Price et al.
[39] noticed that users are less concerned in sharing images
with a group of other lifeloggers than with non-lifeloggers, fur-
ther suggesting that this could re-define what a private space
means when lifelogging in a group. In another work, Adams
[1] proposes a privacy model that considers image receiver
and purpose of usage as additional factors that exert influence
on a sharing decision. All these studies confirm the privacy
challenges of visual lifelogging and highlight the need for
techniques for privacy-aware data capture and data sharing.

Privacy-enhancing Techniques of Visual Logs
Several solutions have been proposed for regulating access
and controlling data sharing [3], however, they usually require
active user input in order to specify fine-grained access control
and privacy policies. Due to the large volume of captured
experience data, this would be a cumbersome process for
lifeloggers [8]. For instance, a single Narrative Clip camera
produces 120 pictures in one hour, or 1’500 in a day. One
option is obviously not to capture all that information in the
first place, but the challenge is that one cannot foresee which
data might be a valuable memory trigger.

Prior work has made attempts to automate to some extent such
decision efforts by designing algorithms that can understand
both capture context and captured data. For example, Fan et al.
[14] propose a mobile-based technique that stops lifelogging
capture when it detects that a user is in a restroom. Moncrieff
et al. [34] leverages background audio, but also other sensors,
to determine the context in surveillance scenarios running in
private environments, such as smart homes. Based on the
inferred context, the system will activate a predefined privacy
policy and enforce it using a combination of data hiding tech-
niques. Other approaches rely on computer vision algorithms
to study the captured images themselves and flag those that
contain specific places [43], particular objects [15], computer
screens [28], or even images that portray activities [31].

While all these (semi-)automated solutions can potentially
improve user privacy, however, they may reduce the utility
of a memory augmentation system. As Adams [1] notes,
privacy concerns related to captured experiences often rely on
users’ implicit assumptions of its usage and intended receiver,
and as such they can vary with person and context [8]. For
instance, an image that can infringe a user’s privacy because it
contains a computer screen can be the strongest memory cue;
or a user might want to share such computer screen image with
only a particular other user that she trusts more. In contrast, we
propose a solution based on (manual) in-situ user input. In-situ



Figure 2. The current MemStone prototype supports five physical gestures: (1) face-down; (2) face-up; (3) stand-on-side; (4) double-tap; (5) shake.

controls offer greater flexibility to users and allows them to
react in real-time based on their impressions of the context,
but still keep user involvement lower than post-hoc solutions.
Hoyle et al. [23] also confirm that lifeloggers prefer in-situ
control more than manual post-hoc filtering. Ultimately, our
in-situ control can go side-by-side with an automatic control
approach and complement it.

Gesture-based Control Interfaces
Prior research has explored the opportunities of controlling
virtual information using objects from the physical world.
Fitzmaurice et al. [18] propose a technique for manipulating
digital data using graspable wooden blocks, with the goal of
augmenting traditional graphical user interfaces. The tangible
bits vision by Ishii and Ullmer [25] aimed at bridging the gap
between digital bits and graspable objects, where objects from
the physical world would both manipulate and visualize digital
content. Similarly, Fishkin et al. [17] present the paradigm of
embodying physical manipulations to computational devices,
so that the device’s physical body becomes also its interface.

Other research has particularly focused on box-shaped phys-
ical interfaces. For example, Rekimoto and Sciammarella
proposed ToolStone [40], a cordless tangible interface con-
trollable by physical manipulations. ToolStone would be op-
erated by users’ non-dominant hand and would complement
the traditional computer input device (i.e., the mouse) in var-
ious applications where such a bimanual interface could be
appropriate, e.g., choosing a color from a palette; zooming,
scrolling or rotating screen contents; controlling a virtual cam-
era, etc. Sheridan et al. [41] explored the affordance of a cube
as control interface. Through a user study they developed a
classification of 16 distinct gestures (or non-verbal dynamics)
that users performed with a cube, such as placing the cube
in a particular place or position, turning it, rotating, tapping,
shaking, squeezing or fiddling with it, etc. Van Laerhoven et
al. [45] build a such a cube that embodies gesture recognition
and show how it can be used as an input device for desktop
applications involving selection and navigation operations.

All these studies show the feasibility and psychological affor-
dance of box-like interfaces, however they mostly focus on
applications for extending traditional input devices or GUIs.
Moreover, in these works the box was used only as an input
device and was not utilized to also provide feedback back to
the user. In our work we adopt the concept of a box-shaped
interface and apply it in a scenario that goes beyond extending
conventional input devices, i.e., allowing one to control and ob-
serve how, when and with whom one’s lifelogging devices are
capturing and sharing data that constitutes one’s memories.

MEMSTONE INTERFACE
We designed MemStone inspired by Rekimoto’s and Sci-
ammarella’s ToolStone [40], particularly by its design and
shape, but also based on design requirements by prior work on
tangible interactions [25, 44]. MemStone is a rectangular-
shaped 3D printed box (measuring 67 mm × 52 mm); aug-
mented with an embedded computing platform (NodeMCU
ESP82661), an accelerometer sensor, a vibration mini motor,
wireless communication capabilities and a lithium battery. In
principle it can thus communicate directly with a range of
capture devices (e.g., body-worn cameras, smartglasses, audio
recorder bands, etc.) in order to allow users to in-situ con-
trol, with simple physical manipulations, what memories such
devices can capture and share with co-located others.2

Its shape (rectangular) and visual appearance (bi-colored) aim
to allow users to easily understand its current operation (to
some extent also its available gestures) at a glance. The front
side (see Figure 1–a) has a central screen (with a resolution of
128×64 pixels and a diagonal size of 33 mm) that provides
feedback on the system’s current mode of operation. Specif-
ically, the screen shows several aspects of the active action,
such as elapsed time of current data capture (if such practice is
active), the number of peers one is sharing data with (if any),
if newly joining peers are allowed to automatically get a copy
of captured data, and the device’s remaining battery level. The
front side has two additional LEDs that also give details about
the current operation. The LED on the left will signal the user
when the experience is being captured while the other LED
will indicate that such data is also being shared. The back side
(see Figure 1–b) has a different color than the other sides to
allow the user, as well as other co-located people, to see the
device’s state from a distance and thus allow them to note its
active operation without having to closely look at its screen.

Gestures and Control Actions
Starting from the previously described challenges, we have
derived five different aspects that one could control when
capturing and sharing experience data. Each such control
action can be executed by performing a particular physical
gesture using MemStone, as shown in Figure 2. For the gesture
selection we were in part inspired by the work from Sheridan
and her colleagues [41]. Through a user study, Sheridan et
al. explored the natural affordance of a cube-shaped device
and came up with a classification of 16 physical gestures that

1http://www.nodemcu.com
2Note that, however, the current prototype of the MemStone fea-
tures gesture recognition but it does not implement a protocol for
communicating with other devices.
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a cube affords. Starting from their result, we selected 5 such
physical gestures that we believed to offer a good match to the
actions for controlling experience data capture and sharing:

• The face-down gesture (Figure 2-A) stops both data cap-
ture, sourced from any of the user’s capture devices, and
data sharing with other co-located people. This way a user
can let others know that she does not record anything herself.
While this may also signal that a user does not want others
to record her, the MemStone cannot control the capture
operations of other users.

• By putting the MemStone device face-up (Figure 2-B), the
user triggers her data capture from any of her lifelogging
gear. In addition, the user informs co-located peers that she
is recording and expresses her willingness to exchange data
with them. Sharing commences automatically with all other
peers that have similarly positioned their device face-up.

• One could as well capture data from their own recording
gadgets but inform others that she does not want to share
data of that particular moment. This is achieved by putting
the MemStone on a vertical stand-on-side position, facing
oneself (Figure 2-C). Any active sharing session with any
peer stops immediately.

• Double-tapping the MemoryStone (Figure 2-D) “locks” the
data exchange with the current set of co-located people and
prevents any further peers from joining (though peers leav-
ing will still be removed from the common data exchange).
A subsequent double-tap will remove this lock. A simi-
lar access control mechanism, but using the metaphor of a
virtual wall, has been proposed by Kapadia et al. [26].

• The shake gesture (Figure 2-E) allows the user to delete the
last 30 seconds (this is configurable) of captured data. By
repeating this gesture the user can delete data captured for
longer periods.

Gesture recognition is based solely on data obtained from a 3D
accelerometer sensor. Triggered actions are confirmed with
the help of distinct vibration patterns as feedback. For the
lock/unlock action, two different vibration patterns will signal
the user the current lock state after the initiated change.

Envisioned Usage Scenario
To better illustrate the vision of (i) a pervasive memory aug-
mentation system that also supports seamless sharing of mem-
ories and (ii) the MemStone’s concept as a tangible control
interface for such a system, consider the following meeting
capture scenario, as shown in Figure 3.

Team Alpha, with its members Bob (Figure 3 left), John (Fig-
ure 3 middle) and Alice (Figure 3 right) have recently decided
to use a memory augmentation system during their weekly
meetings. During one meeting, Bob and John use a body-worn
camera that automatically captures an image every 30 seconds.
Alice uses a set of smartglasses that, similarly to the cameras,
capture 2 photos per minute. Bob also brought a wristband
that captures the last 30 seconds of audio with a single tap.

Each device uploads the data it captures to the respective user’s
memory repository, where such data is then processed in order
to generate memory cues. Eventually, generated cues will be

Figure 3. Illustartion of the envisioned usage scenario.

delivered to the user through ambient fashion displays (e.g.,
screensavers, phone lock screens, picture frames, etc.). By
reviewing such cues, they would improve their recall of past
meetings and thus be more prepared for their next meeting.

All team members use the MemStone device to control their
meeting capture and sharing practices. At the scenario in Fig-
ure 3, Bob and John have positioned their MemStones face-up
notifying others that they are capturing this part of the meeting,
as well as expressing their willingness to exchange data with
the rest. As a consequence, they would get access to images
captured from each other’s cameras. John is particularly in-
terested in obtaining images from Bob’s camera, especially
since his camera could occasionally capture the whiteboard
(which is not the case with John’s camera). In addition, John
would also obtain audio snippets recorded by Bob’s wristband.
Alice, on the other hand, fears that her glasses might capture
some sensitive information from her laptop’s screen, which
she has in front of her. She decides not to share any data with
the rest, but only records for herself. To do that and also to
inform others that she is not willing to share anything, Alice
has put her MemStone on the stand-on-side position.

In this scenario, we envision that MemStone devices will be
part of the meeting room, just as one finds a remote controller
for the projector or whiteboard markers in such a room. Before
the meeting start, each attendee picks up a MemStone from
a small receptacle at the entrence and connects it with their
meeting capture gear (e.g., by simply physically touching
those devices together [22]). The connection would remain
active as long as the devices are in close proximity. After
the meeting ends, users would return the MemStones to their
receptacle or simply leave them on the table. Once a user
leaves the room, the MemStone disconnects from their capture
devices and reverts back to an idle state.

Using MemStone to Control Infrastructure Sensors
In addition to data sourced from their personal devices, team
Alpha members occasionally use the room’s built-in capture
infrastructure to also make recordings of their meetings. The
room is equipped with a fixed-camera, a central audio recorder,
as well as a smartboard that captures snapshots of its contents.

Meeting attendees could use their MemStone to implicitly
control experience capture from such infrastructure devices. A
strict privacy-aware approach would stop recording from any



fixed sensor as long as there is at least one participant that has
positioned their MemStone face-down (i.e., does not record
for themselves and does not want to exchange any data with
others, Figure 2-A) or also on a vertical stand-on-side position
(records only for themselves without sharing any data with
others, Figure 2-C). Another approach would be that recording
is based on a majority decision, or even unanimosity (i.e.,
infrastructure sensors stop recording only if all users disable
recording). Alternatively, the room’s capture devices could
also be controlled by a designated “room-MemStone”. Its
operation would then need to be agreed on by all participants.

In this work, we consider a similar scenario (i.e., a meeting
capture between two attendees in which data is sourced only
from user controlled devices) in order to: 1) investigate how
controlling data capture and sharing practices using physical
gestures compares with a more traditional alternative (i.e.,
smartphone app), and 2) understand user perceptions regarding
the MemStone gesture-based interface.

PHONE-APP AS AN ALTERNATIVE INTERFACE
Prior research in lifelog privacy [23] suggests that lifelog-
gers prefer in-situ control over end-of-day filtering for decid-
ing which visual logs are shareable with others. Tradition-
ally, such in-situ privacy control approaches are implemented
as mobile apps running on a touch-based smartphone [2, 7].
While emerging body-worn devices, such as smartwatches or
wearable glasses, could in principle become viable alternative
platforms for designing privacy control apps, the widespread
use of phone apps means that a smartphone-based tool rep-
resents the most viable alternative to our proposed tangible
interface today.

We thus created a simple smartpone app that can act as a
baseline alternative to MemStone. The phone UI, displayed in
Figure 4, allows one to perform the same five control actions
that can be performed using a MemStone. Note that since
we wanted to compare the gesture-driven MemStone against
the idea of using the smartphone as control interface (and not
compare with a particular interface design per se), we went
with a rather simplistic but intuitive UI: operated by buttons,
each with a short label clearly describing its action. In the
previous meeting capture scenario, users would install this app
on their personal phones and pair it with their lifelogging gear.

USER STUDY
We conducted a user study aimed to address the following
research questions:

1. Is the proposed gesture-based interface usable for in-situ
controlling data capture and data sharing in meeting capture
scenarios?

2. Are the chosen in-situ controls easily remembered even
after longer time periods?

3. How does the use of gesture-interactions to control data cap-
ture and sharing perform against conventional (i.e., mobile
app-based) user interfaces?

4. What are user perceptions on such gesture-based con-
trol interface within the context of memory augmenta-
tion systems?

Figure 4. A phone-based interface for controlling data capture and shar-
ing of daily experiences. Screenshots of different interface states: a) ini-
tial state when no capturing or sharing is taking place; b) state of an
ongoing data capture but not sharing; c) interface’s state after activat-
ing data sharing with co-located peers.

For this study we recruited 20 participants (7 of them were
female) using snowball sampling. Their age ranged from 22 to
63 years old, with an average age of 28.75 years (SD = 9.31).
They had different education levels, 4 of them had a high-
school degree, 9 were bachelor graduates and 7 had a masters
degree. Most of our participants stated that they have an affin-
ity for technology. All said that they used a smartphone several
times a day and a laptop few times a week. No incentive re-
muneration was provided to study participants.

Study Design and Procedure
We performed a comparative user study, employing a within-
subjects design in a counterbalanced order, where each partici-
pant tried both interfaces, MemStone and smartphone app, in
differing order (i.e., MemStone–Phone or Phone–MemStone).

We considered a meeting capture scenario between two people,
similar to the previous scenario in Figure 3. To strike a balance
between validity and repeatability, we prepared two different
videos, each showing a meeting. We then asked participants
to watch those videos and pretend to be one of the attendees.
Each such recorded meeting contained 10 tasks related to con-
trolling capturing and sharing of memories within the meeting
(note that a detailed description of both meeting videos and
tasks is provided in the next section). Prior to watching a
meeting video, participants were given either our MemStone
or an Android mobile phone with the corresponding control
app installed (accessible via a shortcut from the home screen).
They were then instructed to use the respective tool for han-
dling these control and sharing tasks. The phone was a Nexus
5X running stock Android 8.0 with only our app additionally
installed. Note that the Nexus 5X features a default screen
timeout of 15 seconds, which we did not change. While no
screen lock (e.g., PIN) was setup, participants had to turn on
the phone and then swipe up the lockscreen before they could
interact again with the app after a screen timeout.

A session with a single participant lasted on average 60-70
minutes. At the outset, we briefly introduced the study, asked
participants to sign a consent form, and to provide basic de-
mographic information. Then, the session proceeded with the
following stages:



1. Introduction of the vision for technology-driven memory
augmentation, with a focus on how it could be applied to
the envisioned meeting scenario.

2. A short demonstration of one of the interfaces followed by
a trial session where participants try the different function-
alities of the chosen interface.

3. Participants watch a video of a recorded meeting and use
the assigned interface to control access to (and sharing of)
their meeting memories.

4. Users fill a SUS questionnaire to express their perceived
usability of the interface.

5. Repeat steps 2–4 using the other control interface and the
second video.

6. Semi-structured exit interview, reflecting on the experience
with both interfaces.

Participants’ interactions with the interfaces (steps 2–4) were
video recorded using a wide-angle camera. The produced
video data was later used to compute the devices’ efficiency
and effectiveness for performing the specified control actions.
The goal of the semi-structured interviews was to better under-
stand the user experience with both control interfaces, and to
also explore user perceptions on the proposed in-situ control
interface. We recorded these sessions using a voice recorder,
and then transcribed the recorded interviews. To analyze this
data, we followed an iterative process, going back and forth be-
tween the data and the researchers’ notes [33]. This technique
helped us to organize participants’ feedback related to our
TUI’s physical design, its interaction, as well as participants’
perceived usefulness of the system.

Recorded Meetings and Tasks
To better simulate a real meeting scenario, we created two
videos depicting a meeting between an instructor and a teach-
ing assistant, in which they discuss the progress of a course
they teach together. In the video, both attendees capture the
event using a wearable camera, while one of them also uses
a wristband audio recorder. During the video, the attendees
discuss both non-sensitive and sensitive issues (e.g., student
grades), thus requiring several control actions on the capture
and sharing system. Each time such a control point comes
up, the “actors” explicitly announce this need for control (e.g.,
“Let me pause recording for a moment!” or “Can you delete
this part, please?”), yet without explicitly stating what exactly
they have to do. A small icon at the bottom-right corner of
the screen additionally triggers the need for action. To allow
for different participant reaction times, the study administrator
would then remotely pause the video and resume it only after
the participant would perform an action, or would say that they
would not know what action to perform. For each action, we
measured participants’ reaction time and task completion rates.

In total, there were 10 tasks involving all five control actions
that were presented previously (3 of them were repeated twice),
plus two additional information gathering tasks related to the
feedback given by the control device (see Figures 2 and 4):

T1: Capture and share with co-located peers. MemStone:
face-up; Phone: press “Start Recording” and then “Start
Sharing” buttons.

T2: Check elapsed time of current capture. MemStone:
shown on small display. Phone: shown in app.

T3: Stop capturing and sharing. MemStone: face-down;
Phone: press “Stop Recording”

T4: Capture only for oneself and do not share with others.
MemStone: stand-on-side; Phone: press “Stop Sharing” if
currently sharing.

T5: Capture and share with co-located peers (see T1).

T6: Delete the last 30 seconds of captured data. MemStone:
shake; Phone: press “Delete 30 Sec.”.

T7: Lock current sharing session. MemStone: double-tap;
Phone: press “Lock Session”.

T8: Verify with how many peers the system is sharing data.
MemStone: shown on small display; Phone: shown in app.

T9: Stop capturing and sharing (see T3).

T10: Capture only for oneself and do not share with others
(see T4).

The produced meeting videos are slightly different in order to
minimize participants’ learning bias when they have to watch
both videos for trying the two interfaces. In addition, the
videos also feature different task sequences.

RESULTS: INTERFACE COMPARISON

Efficiency and Effectiveness
Initially we compared both interfaces in terms of effectiveness
(i.e., task completion rate) and efficiency (i.e., task completion
time). For each device we collected data from 10 interaction
tasks from a single participant, resulting in a total of 400 tasks
performed from all 20 participants with both control interfaces.

For computing the task error rate, we only looked at the human
error aspect and did not consider mistakes from the system
(e.g., if the MemStone device failed to recognize the performed
gesture). As displayed in Figure 5–a, participants on average
performed equally well with both interfaces. However, when
looking at individual tasks, MemStone users performed less
mistakes than phone users in tasks related to ‘capturing and
sharing with others’ (T1 and T5) and ‘capture only for oneself’
(T4 and T10). The challenge with performing tasks T1 and T5
using the phone UI is that one has to press two buttons, one
for recording and for sharing, as opposed to the single gesture
(face-up) with MemStone. From our observations, we saw
that most participants pressed only the “start recording” button
in these cases. In two cases, we observed that participants
confused the MemStone gesture for performing T4 and T10
(i.e., stand-on-side) with those of T3 and T7 (i.e., face-down
and double-tap, respectively). When using MemStone, two
participants failed to do T2 (reading the elapsed time of the
current capturing) and T8 (verifying that that the preceding
task on locking the sharing session) since they did not notice
that such information was displayed in the MemStone’s screen.
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Figure 5. Effectiveness and efficiency results: a) task completion rate in percentage; b) average task completion time in seconds (includes data from
successfully completed tasks only). Error bars represent 95% confidence interval.

For each task we also measured the time between the mo-
ment the visual clue was provided (an icon being displayed
in the video of the recorded meeting) to the moment partic-
ipants performed the correct action. Such information was
precisely computed from the session video recordings using
the timestamps overlaid on those videos. For all tasks, Mem-
Stone outperformed the phone interface in this aspect: us-
ing the MemStone participants could compute a given task
in average 2.5 times faster than when using the phone inter-
face (see Figure 5–b). We conducted a repeated measures
ANOVA to compare the effect of control interface (Mem-
Stone and Phone app) on task completion times. Results
show that MemStone was significantly faster than Phone app
(Wilks’ Lambda= 0.485, F(1,180)= 190.799, p< 0.001).3
Moreover, we performed a Sobel test [42] to check if these
results are not due to the fact that some of our participants had
not recently used an Android phone (and that they could have
spent more time performing the study tasks using the Android-
based test phone, thus, making the control with the phone
slower). Test results confirmed that the effect of control inter-
face on task execution times was not significantly mediated by
participants’ smartphone ownership (z = 0.056, p = 0.954).

This was also reflected in participants’ perceptions during the
interview sessions, where the MemStone was perceived to be
more efficient in performing the given actions: “I think the
dedicated device is better, it is just easier. You do not need
to check your phone and you are not losing time. While in
the phone maybe you get a message and you want to read it,
hence it is not efficient.” (P13, similarly P14, P19, P20).

Perceived Usability and Learnability
We also compared the two interfaces with regard to users’ per-
ceived usability and learnability. After watching a recorded
meeting and using one of the two interfaces for controlling
meeting capture and sharing, participants evaluated the inter-
face using a SUS questionnaire. SUS is a 10-item question-
naire that has been extensively used by usability practitioners
for assessing only the perceived usability of a system. How-
ever, two recent works [6, 30] suggest that the SUS result
can be decomposed into two components for measuring both
usability and learnability of a system. After applying this ap-
proach, the average usability scores for both the MemStone
3Statistics were computed using data only from successfully com-
pleted tasks.

and the phone interfaces are 75.31 (SD=18.38) and 82.81
(SD=16.42), respectively. This suggests that the gesture-based
MemStone prototype is in principle usable above average.
However, it echoes user concerns regarding the necessity for an
additional control device, which we discuss later in this paper.

As for the learnability aspect, MemStone scored an average of
78.75 (SD=22.61) and the phone’s score is 89.37 (SD=13). Un-
surprisingly, the phone – being an already established concept
and an artifact that most of us know how to use and operate –,
scored higher than the novel interface concept of MemStone.
All phone buttons were also unambiguously labeled, making
it easy to use without having to remember much. However,
the small difference in their scores implies that participants
find MemStone not much harder to learn. This was also un-
derlined from some participants during the interview. They
believed that MemStone can be quickly learned also by chil-
dren: “I think it was a bit easier to use than the phone app.
You do not have to unlock your phone and choose the right
button, so it was quite intuitive and user friendly. And I think
even children would be able to use this correctly and learn it
in few minutes.” (P2, similarly P7, P14).

Perceived Intuitiveness and Enjoyment
During the interview sessions, we asked participants to reflect
on how they would compare these interfaces in terms of in-
tuitiveness and enjoyment. Enjoyment is an important part
of the usability of a product, as it positively influences both
a user’s willingness to learn and their tolerance for interface
shortcomings [37]. Participants acknowledged the fact that
the phone UI was clear and intuitive, and that it was similar
to many other apps that they use everyday: “The phone is
more intuitive. You have the feedback you know exactly what
is going on. As for the buttons you know what each of them
does.” (P13, similarly P19). However, they also regarded the
MemStone to be equally intuitive to interact with: “The phone
is labeled, something you use everyday. It is easy and more
intuitive. It does not mean that the box was harder, it was also
really easy to understand.” (P19, similarly P14, P16, P20).
Some others would even believe that MemStone can actually
become more intuitive once users get to know it better: “Once
you pass the learning phase it becomes more mechanic, proba-
bly without thinking so much you would just use the MemStone.”
(P17, similarly P5).



P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11
Question	

success	rate	(%)

Q1:	"Face-up"	gesture 63.6
Q2:	"Capture	and	share"	action 81.81
Q3:	"Shake"	gesture 81.81
Q4:	"Delete"	action 81.81
Q5:	"Stand-on-side"	gesture 63.6
Q6:	"Capture	for	oneself"	action 81.81
Q7:	"Double-tap"	gesture 54.54
Q8:	"Lock	sharing"	action 45.45
Q9:	"Face-down"	gesture 100
Q10:	"No	capture"	action 90.9
Q11:	"Slide"	gesture 90.9
Q12:	"Squeeze"	gesture 81.81
Q13:	"Rotate"	gesture 72.7
Q14:	"Swipe"	gesture 63.63
Q15:	"Tap-on-table"	gesture 54.54
Participants'	success	rate	(%) 100 100 60 100 40 66.6 100 100 73.3 40 33.3

Correct	guess Wrong	guess Not	remembered

False	positive:	a	fake	gesture	was	mistakenly	selected	for	a	specific	action

False	negative:	a	non-fake	gesture	was	mistakenly	selected	for	some	action

Figure 6. A heatmap illustration of the distribution of answers from the survey on long-term gesture memorability. Odd numbered questions from 1 to
10 ask participants to map a given gesture to an action, while even numbered questions ask the opposite. Questions from 11 to 12 quiz participants on
the action that would be triggered from a fake-gesture that was not used in the first study.

Participants were less divided in expressing their opinion on
devices’ perceived enjoyment. A clear majority said that using
the MemStone was more enjoying and fun (P1 but also P2,
P4, P6, P9, P13-P20). The reasons for such choice were vari-
ous: the phone UI was just another app (P13, P14, P16); the
MemStone was a novel concept operated by physical manipu-
lations and is something that one will not encounter frequently
(P13-P20); or also because the phone is more invasive and
requires active user focus: “The phone took out the fun the
moment I had to stop whatever I was doing and focus on it
to search the necessary functions. That was not fun! The
cube was definitively more fun.” (P20, similarly P17). Other
participants compared the experience of using the MemStone
with that of a toy: “The MemStone is more fun to use, it is a
toy essentially. . . ” (P13) while P20 got emotionally attached
to it comparing it with a pet: “And I like the vibration, it be-
comes like pet in a way. I guess you can get very emotionally
bonded to it.”.

GESTURE LONG-TERM MEMORABILITY
In addition to exploring several characteristics of MemStone
gestures, including efficiency, enjoyment, learnability and us-
ability, we also explored gesture memorability. Prior research
highlights memorability as a key characteristic of gesture-
based interfaces [20, 32], since easy to remember gestures
can reduce mistakes and frustration (especially when one is
focused on other important things during a work meeting).
Additionally, memorability can also increase adoption of a
gesture-based interface [35].

After conducting the comparative user study, we administered
a follow-up study with the goal of investigating participants’
long-term memorability of the MemStone’s physical gestures.
This follow-up inquiry was conducted four months after the
first study. We contacted all prior participants by email and
asked them to participate in a short follow-up online survey.
11 participants from the prior study (55%) participated in the
follow-up study. As in the first study, no incentive payment
was provided to participants for this follow-up study.

Follow-up Study
The survey contained two types of multiple-choice questions.
The first 10 questions showed a MemStone gesture (e.g., “face
down”) and then asked participants to select which of the given
five actions would be triggered after performing the gesture.
For each gesture the survey showed a small embedded video
of how it is performed. As the original study only had five
gestures for five actions, we included five fake-gestures that
were not used in the previous study, yet which were somehow
similar to the original five gestures: squeeze, rotate, swipe,
tap-on-table, and slide-device-back-and-forth. The fake ges-
tures were meant to understand how memorable the original
gestures were. Given that not all of the 10 gestures mapped to
an actual action, participants could answer “This gesture was
not used in the study”, as well as “I do not remember this ges-
ture”. A second part of the survey questions then investigated
the reverse, i.e., the mapping of actions to gestures. Here, 5
questions showed an action (e.g., “pause recording”) and par-
ticipants then had to select which of the 10 previously shown



gestures (i.e., 5 real gestures and 5 fake gestures) would trigger
this action. An 11th option again was “I do not remember the
gesture for this action”. All 15 questions were presented to
participants in random order.

Results
Figure 6 provides an overview of the results from the long-term
gesture memorability survey. From participants’ individual
responses (columns P1 to P11 in Figure 6) we observe that
five participants answered all questions correctly, three par-
ticipants have a correct response rate between 60% and 73%,
while the other three participants (P5, P10 and P11) could
only successfully answer less than 60% of the questions. We
investigated further their individual performances achieved
during the first study. There was no indication for P5’s low
performance, however, for both P10 and P11, their low level of
engagement during the first study and also their lack of interest
for extra electronic devices seem reasonable explanations for
their low performance. This can also be confirmed by their
perceived SUS scores for MemStone’s usability (32 and 55).

When looking at the gesture-action mapping (see rows Q1
to Q10 from Figure 6 with a combined order of gesture and
related action questions), both the ‘face-down’ gesture and the
‘no capture’ action were successfully mapped in 90% of the
cases. The second best such mapping (with a correct response
rate of 72%) is for the ‘shake’ gesture and ‘delete 30 seconds
of data’ action. The weakest mapping with only 45% was
for the ‘double-tap’ gesture and the ‘lock sharing’ action. By
further investigating this association, we observed that in four
cases the ‘double-tap’ action was mistaken with another action
(once with ‘delete 30 seconds of data’ and three times with
‘capture and share data’). When asked to identify the action
for the ‘double-tap’ gesture, four participants said that they
do not remember it, and two others selected a wrong gesture
(‘face-down’ and the ‘squeeze’ fake gesture).

Among the fake gestures, i.e., physical gestures that were
not used in the first study (rows Q11 to Q15 from Figure 6),
the ‘tap-on-table’ and the ‘swipe’ were wrongly selected as to
trigger an action in 3 and 2 cases, respectively. In line with the
previous outcome, the ‘lock sharing’ was the mostly mistaken
action to be triggered by such fake gestures.

All in all, even after four months participants were able to
successfully recall the relationship between most physical
gestures and control actions. Apart from the association of
the ‘double-tap’ gesture and ‘lock sharing’ action, all others
gesture-actions were correctly identified in more than 60% of
the survey questions, which suggests that they can be success-
fully used with the proposed tangible interface concept.

USER PERCEPTIONS OF THE MEMSTONE DEVICE

Suggested Design Improvements
Participants generally liked the concept of the rectangular-
shaped box. They also liked its bi-colored design, the two
LEDs (which indicate capturing and sharing activities), and its
central screen. However, they proposed several improvements
related to its physical design.

Participants believe that making it smaller and lighter would
also make the device to better fit their hands, thus being also
easier to be used (P2, P13). Moreover, it would also become
less of a burden to carry it with them: “I think you can do this
device smaller, like a USB stick. I have 3-4 sticks with me and
it is not a big problem.” (P13, similarly P14). Additionally,
the current prototype was perceived as being a bit slippery, so
designers should take into account materials which provide
better grip: “The current prototype is a bit slippery and it can
easily escape from the hands.” (P15).

To further improve the device’s feedback, participants sug-
gested to include an additional LED for the ‘lock sharing’ ac-
tion, similarly as for the ‘capturing’ and ‘sharing’ actions. Par-
ticipants expressed contrasting opinions regarding the amount
of information displayed on the MemStone screen. Some
would like to have a less cluttered screen that would show only
the number of peers one is sharing data with, together with
the elapsed time of sharing, while others would want even
more information, such as as detailed profile information on
the connected peers and their physical distance. This suggests
that one should consider a customizable interface that can be
switched between such simple and comprehensive views.

Interaction Techniques
Gesture Affinity
Study participants expressed an affinity for the underlying
physical gestures. The mapping between gestures and their
control actions was well aligned to users’ mental models, thus
it was easy to associate them during the study: “I think it is
very intuitive, if you have it face-up, it kind of radiates through
versus everybody sitting around, facing yourself it is just you
and face-down is off. You have chosen the functions nicely
with the physical movements and the device’s position.” (P7);

“Once you rationalize them, you see that some are quite easy,
such as turning on the other side. But also other ones pair to
their actions and make absolutely sense. From that point of
view they become easy to remember and can be used without
thinking.” (P16, similarly P9, P14, P17-P20). P16 further
commented on the low physical demands for performing such
gestures, suggesting that the interface can be also operated by
people with slight physical disabilities.

Gesture Challenges
Users also expressed some concerns and challenges with the
‘shake’ gesture, as well as with the ‘double-tap’ one. While
the mapping between ‘shaking’ and ‘delete data’ was not
necessarily questioned, it was seen as a rather hard-to-perform
gesture (P4, but also P5, P7, P14, P17, P18). Since most of
us tend to also move our hands while we speak, it is likely
that the system can mistakenly delete our data in such cases.
Moreover, it was suggested that it may be even considered as
not polite to perform it while one is speaking in a meeting.
Suggested alternatives were ‘swipe’ or ‘squeeze’.

While ‘double-tap’ was considered an easy-to-perform gesture,
most participants expressed their concerns regarding its rela-
tionship with the ‘locking sharing’ action. They also believe
that ‘locking’ should be extended beyond a binary lock/unlock
model, so that one can be more selective on whom to keep and
remove from their locked session.



Role of Device Visibility
Participants appreciated the fact that MemStone is more visi-
ble and transparent than the phone in conveying its feedback
to all co-located users. Such openness had a two-fold effect on
participants’ perceptions about the device. First, participants
said that they felt more confident about their privacy. For
instance, should users agree not to record some part of the
meeting, then by looking at others’ MemStones they can easily
understand if they are behaving according to the agreed proto-
col: “If there’s something that doesn’t have to be recorded and
I ask for it, then I can see if people are following. This gives
me more confidence. It’s a way to see what people do and how
they behave; it’s an additional feedback.” (P15, similarly P4).

The increased confidence, however, may also come with a cost.
Some participants said that the device’s transparency could
also influence their data capturing and sharing practices: “It
would extremely change my behavior even if I might try not
to let it influence me. Thinking that somebody is watching me,
or even recording me, you become self-aware, it changes your
behavior, you want it or not.” (P17, similarly P2, P4, P14).
However, others suggested that their decision to share or not
actually depends on the context and on the other attendees
(P13, P15, P18, P19). This outcome is in line with prior
work [46] which suggests that knowledge sharing behavior
is influenced by multiple factors. Lastly, some participants
expressed their belief that by observing the action of others
one can increase their meeting concentration: “Since one is
recording, then maybe someone will say something important
and I should record too.’ (P14, similarly P16, P17).

DISCUSSION
Overall, our TUI was efficient in allowing users to control
access to, and sharing of, captured experiences in a meeting
context. It was also perceived as user-friendly and enjoyable to
use, which is in line with findings from Hoyle and colleagues
[24], suggesting that users preferred an in-situ control method
rather than other post-hoc approaches, such as [15, 43].

MemStone’s efficiency and effectiveness, but also our partici-
pants’ affinity to its gestures, highlight that the device’s affor-
dances (i.e., range of possible activities) are visible and clear
to users. This is in line with findings from Sheridan and col-
league [41] on the affordances of box-shaped interfaces, also
following Norman’s insight that such affordanes are useless
if they are not visible to users [36]. We also found that partic-
ipants could relatively well remember the physical gestures
and their corresponding actions even when asked four months
after. Our results suggest that a reasonable relation between
gestures and their actions is what makes them memorable, as it
is also suggested by Nacenta et al. [35]. Moreover, such mem-
orable gestures do not only confirm users’ perception of an
easy-to-use device, but they also suggest that MemStone can
be reliably used in infrequent settings, e.g., monthly meetings.

In general, most of our study participants expressed the desire
to use MemStone in a context where devices are provided at
the event location, e.g., meeting rooms (P2, P5, P13, P14, P15,
P17, P19, P20). However, despite our prototype outperforming
a comparable smartphone application, the interview sessions
uncovered our participants’ concerns for having to carry yet

another device. Participants expressed their disinclination to
carry a personal MemStone device with them during their ev-
eryday activities. While this suggests that convenience trumps
efficiency [11], it might also be a as-of-yet too infrequent use
case (controlling capture devices) to be of much use to people.
A future filled with a plethora of capture situations may very
well change this perspective.

As a possible limitation of our study, we acknowledge the
fact that participants had to pretend that they are participating
in a recorded meeting, which they watched through a laptop.
However, even if we would have organized real meetings with
our participants, they would also have to be scripted in one
way or another, and hence would still be just as artificial as the
recorded meetings. Nevertheless, we believe that evaluating
the prototype in such lab scenarios still allowed participants
to control different aspects of a meeting capture scenario. Re-
sults obtained from this study allow us to answer our research
questions about the comparison of our interface with a more
traditional smartphone interface, and explore participants’ per-
ceptions on our TUI prototype.

CONCLUSION AND FUTURE WORK
In this work we presented MemStone, a tangible user interface
for controlling the capture and sharing of experience data in-
situ. We evaluated our prototype in a meeting capture scenario
with 20 participants. We found that our participants were
significantly quicker in performing data capturing and sharing
controls using MemStone than using a more conventional
mobile app interface. The concept was highly valued by the
participants, it was perceived as user-friendly, quick to learn,
and easy and fun to use. Participants also expressed a positive
attitude towards for the physical gestures and relationship with
the control actions. We also found out that participants were
able to remember the control gestures even after a long time
period, which suggests that such TUI is suitable to be used in
less frequently occurring events. However, in spite of its better
performance and its high perceived value as an ambient-based
control device, participants were very much divided about the
convenience of having to carry an additional personal control
device with them for their everyday activities.

We believe there is value in further improving our initial con-
cept based on our participants’ suggestions. One such im-
provement that we plan to address is to allow users to share
their memories even with others that were not part of the same
event. For example, by ‘touching’ two MemStones together,
users could share data captured in the last hour, e.g., following
a recent work by Geronimo et al. [12] on mid-air gestures.
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